A127632 Expansion of c(x*c(x)), where c(x) is the g.f. for A000108.
1, 1, 3, 11, 44, 185, 804, 3579, 16229, 74690, 347984, 1638169, 7780876, 37245028, 179503340, 870374211, 4243141332, 20786340271, 102275718924, 505235129250, 2504876652190, 12459922302900, 62167152967680, 311040862133625
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- K. Archer and C. Graves, Pattern-restricted permutations composed of 3-cycles, arXiv:2104.12664 [math.CO], 2021.
- J.-C. Aval and F. Chapoton, Poset structures on (m+2)-angulations and polynomial bases of the quotient by Gm-quasisymmetric functions, Séminaire Lotharingien de Combinatoire, vol 77, article B77b.
- Peter Bala, A note on the Catalan transform of a sequence
- Alexander Burstein and Louis W. Shapiro, Pseudo-involutions in the Riordan group, arXiv:2112.11595 [math.CO], 2021.
- David Callan, A combinatorial interpretation of the Catalan transform of the Catalan numbers, arXiv:1111.0996 [math.CO], 2011.
- David Callan, Permutations avoiding 4321 and 3241 have an algebraic generating function, arXiv:1306.3193 [math.CO], 2013.
- S. Csar, R. Sengupta, and W. Suksompong, On a Subposet of the Tamari Lattice, arXiv preprint arXiv:1108.5690 [math.CO], 2011.
- Colin Defant, Catalan Intervals and Uniquely Sorted Permutations, arXiv:1904.02627 [math.CO], 2019.
- Tian-Xiao He and Louis W. Shapiro, Row sums and alternating sums of Riordan arrays, Linear Algebra and its Applications, Volume 507, 15 October 2016, Pages 77-95.
- Hanna Mularczyk, Lattice Paths and Pattern-Avoiding Uniquely Sorted Permutations, arXiv:1908.04025 [math.CO], 2019.
- J. M. Pallo, Right-arm rotation distance between binary trees, Inform. Process. Lett., 87(4):173-177, 2003.
- Y. Sun and Z. Wang, Consecutive pattern avoidances in non-crossing trees, Graph. Combinat. 26 (2010) 815-832, table 1, {ud}.
- S. Yakoubov, Pattern Avoidance in Extensions of Comb-Like Posets, arXiv preprint arXiv:1310.2979 [math.CO], 2013.
Crossrefs
Programs
-
Maple
a:= proc(n) option remember; `if`(n<3, [1, 1, 3][n+1], ((8*(4*n-11))*(4*n-5)*(4*n-9)*(2*n-5)*a(n-3) -(8*(4*n-5))*(n-1)*(22*n^2-94*n+99)*a(n-2) +8*n*(n-1)*(20*n^2-67*n+48)*a(n-1))/ ((3*(4*n-9))*(n+1)*n*(n-1))) end: seq(a(n), n=0..30); # Alois P. Heinz, Apr 06 2015
-
Mathematica
a[n_] := Sum[m*(2*n-m-1)!*HypergeometricPFQ[{m/2+1/2, m/2, m-n}, {m, m-2*n+1}, 4]/(n!*(n-m)!), {m, 1, n}]; a[0]=1; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Jul 24 2012, after Vladimir Kruchinin *) a[n_] := CatalanNumber[n - 1] HypergeometricPFQ[{3/2, 2, 1 - n}, {3, 2 - 2 n}, 4]; a[0] := 1; Table[a[n], {n, 0, 23}] (* Peter Luschny, May 12 2021 *)
-
Maxima
a(n):=if n=0 then 1 else sum(m*sum(binomial(2*k-m-1,k-1)*binomial(2*n-k-1,n-1),k,m,n),m,1,n)/n; /* Vladimir Kruchinin, Oct 08 2011 */
-
PARI
{a(n)= if(n<1, n==0, polcoeff( serreverse( x*(1-x)^3*(1-x^3)/(1-x^2)^4 +x*O(x^n) ), n))} /* Michael Somos, May 04 2007 */
-
PARI
{a(n)= local(A); if(n<1, n==0, A= serreverse( x-x^2 +x*O(x^n) ); polcoeff( 1/(1 - subst(A, x, A)), n))} /* Michael Somos, May 04 2007 */
Formula
a(n) = A127714(n+1, 2n+1).
G.f. A(x) satisfies: 0 = 1 - A(x) + A(x)^2 * x * c(x) where c(x) is the g.f. of A000108.
G.f.: 2/(1 + sqrt(2 * sqrt(1 - 4*x) - 1)). - Michael Somos, May 04 2007
a(n) = (Sum_{m=1..n} (m*Sum_{k=m..n} binomial(2*k-m-1, k-1)*binomial(2*n-k-1, n-1)))/n, a(0)=1. - Vladimir Kruchinin, Oct 08 2011
Conjecture: 3*n*(n-1)*(4*n-9)*(n+1)*a(n) - 8*n*(n-1)*(20*n^2-67*n+48)*a(n-1) + 8*(4*n-5)*(n-1)*(22*n^2-94*n+99)*a(n-2) - 8*(4*n-11)*(4*n-5)*(4*n-9)*(2*n-5)*a(n-3) = 0. - R. J. Mathar, May 04 2018
a(n) ~ 2^(4*n - 1/2) / (sqrt(Pi) * n^(3/2) * 3^(n - 1/2)). - Vaclav Kotesovec, Aug 14 2018
From Alexander Burstein, Nov 21 2019: (Start)
G.f.: A(x) = 1 + x*c(x)^2*m(x*c(x)^2), where m(x) is the g.f. of A001006 and c(x) is the g.f. of A000108.
G.f.: A(x) satisfies: A(-x*A(x)^5) = 1/A(x). (End)
From Peter Luschny, May 12 2021: (Start)
a(n) = Catalan(n - 1) * hypergeom([3/2, 2, 1 - n], [3, 2 - 2*n], 4) for n >= 1.
The G.f. satisfies the algebraic equation 0 = F^4*x - F^3 + 2*F^2 - 2*F + 1. - F. Chapoton, Oct 18 2021
D-finite with recurrence 3*n*(n-1)*(n+1)*a(n) -4*n*(7*n-2)*(n-1)*a(n-1) +8*(n-1)*(2*n^2+30*n-65)*a(n-2) +8*(56*n^3-520*n^2+1534*n-1445)*a(n-3) -32*(4*n-15)*(2*n-7)*(4*n-13)*a(n-4)=0. - R. J. Mathar, Aug 01 2022
Extensions
Better name from David Callan, Jun 03 2013
Comments