cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A023172 Self-Fibonacci numbers: numbers k that divide Fibonacci(k).

Original entry on oeis.org

1, 5, 12, 24, 25, 36, 48, 60, 72, 96, 108, 120, 125, 144, 168, 180, 192, 216, 240, 288, 300, 324, 336, 360, 384, 432, 480, 504, 540, 552, 576, 600, 612, 625, 648, 660, 672, 684, 720, 768, 840, 864, 900, 960, 972, 1008, 1080, 1104, 1152, 1176, 1200, 1224, 1296, 1320
Offset: 1

Views

Author

Keywords

Comments

Sequence contains all powers of 5, infinitely many multiples of 12 and other numbers (including some factors of Fibonacci(5^j), e.g., 75025).
If m is in this sequence then 5*m is (since 5*m divides 5*F(m) which in turn divides F(5*m)). Also, if m is in this sequence then F(m) is in this sequence (since if gcd(F(m),m)=m then gcd(F(F(m)),F(m)) = F(gcd(F(m),m)) = F(m)). - Max Alekseyev, Sep 20 2009
From Max Alekseyev, Nov 29 2010: (Start)
Every term greater than 1 is a multiple of 5 or 12.
Proof. Let n>1 divide Fibonacci number F(n) and let p be the smallest prime divisor of n.
If p=2, then 3|n implying further that 4|n. Hence, 12|n.
If p=5, then 5|n.
If p is different from 2 and 5, then p divides either F(p+1) or F(p-1) and thus p divides either F(gcd(n,p+1)) or F(gcd(n,p-1)). Minimality of p implies that gcd(n,p-1)=1 and gcd(n,p+1)=1 (notice that p+1 being prime implies p=2 which is not the case). Therefore, p divides F(1)=1, a contradiction to the existence of such p. (End)
Luca & Tron give an upper bound, see links. - Charles R Greathouse IV, Aug 04 2021

References

  • S. Wolfram, "A new kind of science", p. 891

Crossrefs

Cf. A000350. See A127787 for an essentially identical sequence.
Cf. A128974 (12n does not divide Fibonacci(12n)). - Zak Seidov, Jan 10 2016

Programs

  • Haskell
    import Data.List (elemIndices)
    a023172 n = a023172_list !! (n-1)
    a023172_list =
       map (+ 1) $ elemIndices 0 $ zipWith mod (tail a000045_list) [1..]
    -- Reinhard Zumkeller, Oct 13 2011
    
  • Magma
    [n: n in [1..2*10^3] | Fibonacci(n) mod n eq 0 ]; // Vincenzo Librandi, Sep 17 2015
  • Maple
    fmod:= proc(n,m) local M,t; uses LinearAlgebra:-Modular;
        if m <= 1 then return 0 fi;
        if m < 2^25 then t:= float[8] else t:= integer fi;
        M:= Mod(m,<<1,1>|<1,0>>,t);
        round(MatrixPower(m,M,n)[1,2])
    end proc:
    select(n -> fmod(n,n)=0, [$1..2000]); # Robert Israel, May 10 2016
  • Mathematica
    a=0; b=1; c=1; Do[a=b; b=c; c=a+b; If[Mod[c, n]==0, Print[n]], {n, 3, 1500}]
    Select[Range[1350], Mod[Fibonacci[ # ], # ]==0&] (* Harvey P. Dale *)
  • PARI
    is(n)=((Mod([1,1;1,0],n))^n)[1,2]==0 \\ Charles R Greathouse IV, Feb 03 2014
    

Extensions

Edited by Don Reble, Sep 07 2003

A263101 a(n) = F(F(n)) mod F(n), where F = Fibonacci = A000045.

Original entry on oeis.org

0, 0, 1, 2, 0, 5, 12, 5, 33, 5, 1, 0, 232, 233, 55, 5, 1596, 2563, 1, 5, 987, 10946, 28656, 0, 0, 75025, 189653, 89, 1, 6765, 1, 5, 6765, 1, 9227460, 0, 24157816, 1, 63245985, 5, 1, 267914275, 433494436, 4181, 1134896405, 1, 2971215072, 0, 7778741816, 75025
Offset: 1

Views

Author

Alois P. Heinz, Oct 09 2015

Keywords

Crossrefs

Programs

  • Maple
    F:= n-> (<<0|1>, <1|1>>^n)[1, 2]:
    p:= (M, n, k)-> map(x-> x mod k, `if`(n=0, <<1|0>, <0|1>>,
              `if`(n::even, p(M, n/2, k)^2, p(M, n-1, k).M))):
    a:= n-> p(<<0|1>, <1|1>>, F(n)$2)[1, 2]:
    seq(a(n), n=1..50);
  • Mathematica
    F[n_] := MatrixPower[{{0, 1}, {1, 1}}, n][[1, 2]];
    p[M_, n_, k_] := Mod[#, k]& /@ If[n == 0, {{1, 0}, {0, 1}}, If[EvenQ[n], MatrixPower[p[M, n/2, k], 2], p[M, n - 1, k].M]];
    a[n_] := p[{{0, 1}, {1, 1}}, F[n], F[n]][[1, 2]];
    Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Oct 29 2024, after Alois P. Heinz *)
  • PARI
    alist(nn)= my(f=fibonacci); [ f(f(n))%f(n) |n<-[1..nn] ]; \\ Ruud H.G. van Tol, Dec 13 2024

Formula

a(n) = A007570(n) mod A000045(n).

A270313 Denominator of Fibonacci(n)/n.

Original entry on oeis.org

1, 2, 3, 4, 1, 3, 7, 8, 9, 2, 11, 1, 13, 14, 3, 16, 17, 9, 19, 4, 21, 22, 23, 1, 1, 26, 27, 28, 29, 3, 31, 32, 33, 34, 7, 1, 37, 38, 39, 8, 41, 21, 43, 44, 9, 46, 47, 1, 49, 2, 51, 52, 53, 27, 11, 8, 57, 58, 59, 1, 61, 62, 63, 64, 13, 33, 67, 68, 69, 14, 71, 1, 73, 74, 3
Offset: 1

Views

Author

Keywords

Comments

a(n) = 1 for n in A023172; a(n) = n for n in A074215. - Robert Israel, Mar 16 2016

Crossrefs

Cf. A000045, A023172, A074215, A104714, A127787, A270312 (numerators).

Programs

  • Maple
    seq(n/igcd(n,combinat:-fibonacci(n)), n=1..100); # Robert Israel, Mar 16 2016
  • Mathematica
    Table[Fibonacci[n]/n, {n, 1, 100}] // Denominator
  • PARI
    a(n) = denominator(fibonacci(n)/n); \\ Michel Marcus, Mar 16 2016

Formula

a(n) = n/A104714(n). - Robert Israel, Mar 16 2016

A270312 Numerator of Fibonacci(n)/n.

Original entry on oeis.org

1, 1, 2, 3, 1, 4, 13, 21, 34, 11, 89, 12, 233, 377, 122, 987, 1597, 1292, 4181, 1353, 10946, 17711, 28657, 1932, 3001, 121393, 196418, 317811, 514229, 83204, 1346269, 2178309, 3524578, 5702887, 1845493, 414732, 24157817, 39088169, 63245986, 20466831, 165580141
Offset: 1

Views

Author

Keywords

Comments

The fractions are an autosequence of the second kind. See the link.
Array of fractions and successive differences:
1, 1/2, 2/3, 3/4, 1, ...
-1/2, 1/6, 1/12, 1/4, 1/3, ...
2 /3, -1/12, 1/6, 1/12, 4/21, ...
-3/4, 1/4, -1/12, 3/28, 3/56, ...
1, -1/3, 4/21, -3/56, 11/126, ...
...
The sequence of fractions being an autosequence, it can be noticed that first column, which is the inverse binomial transform of first row, is identical to the sequence, up to alternating signs.
In addition, main diagonal is twice the first upper diagonal (autosequence of the second kind).

Examples

			Fractions begin:
1, 1/2, 2/3, 3/4, 1, 4/3, 13/7, 21/8, 34/9, 11/2, 89/11, 12, ...
		

Crossrefs

Cf. A000045, A023172, A127787, A270313 (denominators).

Programs

  • Mathematica
    Table[Fibonacci[n]/n, {n, 1, 50}] // Numerator
  • PARI
    a(n) = numerator(fibonacci(n)/n); \\ Michel Marcus, Mar 15 2016
Showing 1-4 of 4 results.