A128400
Numbers k such that k^2 divides 20^k - 1.
Original entry on oeis.org
1, 19, 1432001198261, 3661225986659, 275941052631578947368421, 43838606653900416716028459121, 26357241068661238901986943659181
Offset: 1
Cf.
A128360,
A127103,
A127104,
A127105,
A127106,
A127107,
A127102,
A127101,
A127100,
A127092,
A128405,
A128393,
A128394,
A128395,
A128396,
A128397,
A128398,
A128399,
A128400,
A128401,
A128402,
A128403,
A128404.
-
for( n=1, 10^6, Mod(20,n^2)^n - 1 || print1(n",")) \\ M. F. Hasler, Oct 20 2008
A177920
Numbers k such that k^3 divides 20^(k^2) - 1.
Original entry on oeis.org
1, 19, 7805561, 1432001198261, 3661225986659, 58130944174609, 187470481770989
Offset: 1
-
Join[{1}, Select[Range[10000000], PowerMod[20, #^2, #^3] == 1 &]] (* Robert Price, Apr 04 2020 *)
A014960
Integers n such that n divides 24^n - 1.
Original entry on oeis.org
1, 23, 529, 1081, 12167, 24863, 50807, 279841, 571849, 1168561, 2387929, 2870377, 6436343, 7009273, 13152527, 15954479, 26876903, 54922367, 66018671, 112232663, 134907719, 148035889, 161213279, 302508121, 329435831
Offset: 1
Prime factors are listed in
A087807.
Integers n such that n divides b^n - 1:
A067945 (b=3),
A014945 (b=4),
A067946 (b=5),
A014946 (b=6),
A067947 (b=7),
A014949 (b=8),
A068382 (b=9),
A014950 (b=10),
A068383 (b=11),
A014951 (b=12),
A116621 (b=13),
A014956 (b=14),
A177805 (b=15),
A014957 (b=16),
A177807 (b=17),
A128358 (b=18),
A125000 (b=19),
A128360 (b=20),
A014959 (b=22).
-
s = 1; Do[ If[ Mod[ s, n ] == 0, Print[n]]; s = s + (n + 1)*24^n, {n, 1, 100000}]
Join[{1},Select[Range[330*10^6],PowerMod[24,#,#]==1&]] (* Harvey P. Dale, Jan 19 2023 *)
Edited and terms a(13) onward added by
Max Alekseyev, Nov 16 2019
A014956
Positive integers k such that k divides 14^k - 1.
Original entry on oeis.org
1, 13, 169, 2041, 2197, 26533, 28561, 114413, 320437, 344929, 371293, 1487369, 4165681, 4484077, 4826809, 17962841, 19335797, 24355253, 50308609, 54153853, 58293001, 62748517, 77457601, 233516933, 249302027, 251365361, 316618289
Offset: 1
Cf.
A067945,
A014945,
A067946,
A014946,
A067947,
A014949,
A068382,
A014950,
A068383,
A014951,
A116621,
A177805,
A014957,
A177807,
A128358,
A128360.
-
Join[{1}, Select[Range[2000000], PowerMod[14, #, #] == 1 &]] (* Robert Price, Mar 31 2020 *)
A014957
Positive integers k that divide 16^k - 1.
Original entry on oeis.org
1, 3, 5, 9, 15, 21, 25, 27, 39, 45, 55, 63, 75, 81, 105, 117, 125, 135, 147, 155, 165, 171, 189, 195, 205, 225, 243, 273, 275, 315, 333, 351, 375, 405, 441, 465, 495, 507, 513, 525, 567, 585, 605, 609, 615, 625, 657, 675, 729, 735, 775, 819, 825, 855, 903
Offset: 1
Cf.
A067945,
A014945,
A067946,
A014946,
A067947,
A014949,
A068382,
A014950,
A068383,
A014951,
A116621,
A014956,
A177805,
A177807,
A128358,
A128360
-
Join[{1},Select[Range[1000],PowerMod[16,#,#]==1&]] (* Harvey P. Dale, Jun 12 2024 *)
-
A014957_list = [n for n in range(1,10**6) if n == 1 or pow(16,n,n) == 1] # Chai Wah Wu, Mar 25 2021
A128356
Least number k > 1 (that is not the power of prime p) such that k divides (p+1)^k-1, where p = prime(n).
Original entry on oeis.org
20, 21, 1555, 889, 253, 2041, 5846759, 148305659, 1081, 279241, 9641, 950123, 33661, 63213709997, 583223, 3775349, 72707647, 149070763, 196932497, 5091481, 25760459, 14307947980741, 13861, 9362711, 376457, 132766545553, 63757
Offset: 1
-
(* This program is not suitable to compute a large number of terms *) a[n_] := For[p = Prime[n]; k = 2, True, k++, If[Length[FactorInteger[k]] == 2, If[Mod[PowerMod[p + 1, k, k] - 1, k] == 0, Print[k]; Return[k]]]]; Table[a[n], {n, 1, 13}] (* Jean-François Alcover, Oct 07 2013 *)
Original entry on oeis.org
10, 7, 311, 127, 23, 157, 343927, 7805561, 47, 9629, 311, 25679, 821, 1470086279, 12409, 71233, 1232333, 2443783, 2939291, 71711, 352883, 181113265579, 167, 105199, 3881, 1314520253, 619, 20759, 117503, 1162660843, 1880415721, 263
Offset: 1
Cf.
A128356 (least number k > 1 (that is not a power of prime p) such that k divides (p+1)^k-1, where p = prime(n)).
Cf.
A128456 (least prime factor of ((p+1)^p - 1)/p^2, where p = prime(n)).
A177805
Numbers k such that k divides 15^k - 1.
Original entry on oeis.org
1, 2, 4, 7, 8, 14, 16, 28, 32, 49, 56, 64, 98, 112, 128, 136, 196, 224, 256, 272, 343, 392, 448, 452, 512, 544, 686, 784, 812, 896, 904, 952, 1024, 1088, 1372, 1568, 1624, 1792, 1808, 1904, 2048, 2176, 2312, 2401, 2744, 3136, 3164, 3248, 3584, 3616, 3808, 4096
Offset: 1
A177807
Numbers k that divide 17^k - 1.
Original entry on oeis.org
1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 32, 36, 40, 42, 48, 54, 60, 64, 72, 78, 80, 84, 96, 100, 108, 116, 120, 126, 128, 144, 156, 160, 162, 168, 180, 192, 200, 216, 220, 232, 234, 240, 252, 256, 288, 294, 300, 312, 320, 324, 336, 342, 348, 360, 378, 384, 400, 420
Offset: 1
Cf.
A014960,
A014956,
A014957,
A014951,
A014949,
A014946,
A014945,
A067945,
A128358,
A128360,
A177805.
-
{1}~Join~Select[Range[420], PowerMod[17, #, #] == 1 &] (* Giovanni Resta, Jan 30 2020 *)
A333432
A(n,k) is the n-th number m that divides k^m - 1 (or 0 if m does not exist); square array A(n,k), n>=1, k>=1, read by antidiagonals.
Original entry on oeis.org
1, 1, 2, 1, 0, 3, 1, 2, 0, 4, 1, 3, 4, 0, 5, 1, 2, 9, 8, 0, 6, 1, 5, 4, 21, 16, 0, 7, 1, 2, 25, 6, 27, 20, 0, 8, 1, 7, 3, 125, 8, 63, 32, 0, 9, 1, 2, 49, 4, 625, 12, 81, 40, 0, 10, 1, 3, 4, 343, 6, 1555, 16, 147, 64, 0, 11, 1, 2, 9, 8, 889, 8, 3125, 18, 171, 80, 0, 12
Offset: 1
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
2, 0, 2, 3, 2, 5, 2, 7, 2, ...
3, 0, 4, 9, 4, 25, 3, 49, 4, ...
4, 0, 8, 21, 6, 125, 4, 343, 8, ...
5, 0, 16, 27, 8, 625, 6, 889, 10, ...
6, 0, 20, 63, 12, 1555, 8, 2359, 16, ...
7, 0, 32, 81, 16, 3125, 9, 2401, 20, ...
8, 0, 40, 147, 18, 7775, 12, 6223, 32, ...
9, 0, 64, 171, 24, 15625, 16, 16513, 40, ...
Columns k=1-20 give:
A000027,
A063524,
A067945,
A014945,
A067946,
A014946,
A067947,
A014949,
A068382,
A014950,
A068383,
A014951,
A116621,
A177805,
A014957,
A177807,
A128358,
A333506,
A128360.
-
A:= proc() local h, p; p:= proc() [1] end;
proc(n, k) if k=2 then `if`(n=1, 1, 0) else
while nops(p(k)) 1 do od;
p(k):= [p(k)[], h]
od; p(k)[n] fi
end
end():
seq(seq(A(n, 1+d-n), n=1..d), d=1..12); # Alois P. Heinz, Mar 24 2020
-
A[n_, k_] := Module[{h, p}, p[_] = {1}; If[k == 2, If[n == 1, 1, 0], While[ Length[p[k]] < n, For[h = 1 + p[k][[-1]], Mod[k^h, h] != 1, h++]; p[k] = Append[p[k], h]]; p[k][[n]]]];
Table[A[n, 1+d-n], {d, 1, 12}, {n, 1, d}] // Flatten (* Jean-François Alcover, Nov 01 2020, after Alois P. Heinz *)
Showing 1-10 of 14 results.
Comments