cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A128400 Numbers k such that k^2 divides 20^k - 1.

Original entry on oeis.org

1, 19, 1432001198261, 3661225986659, 275941052631578947368421, 43838606653900416716028459121, 26357241068661238901986943659181
Offset: 1

Views

Author

Alexander Adamchuk, Mar 08 2007

Keywords

Comments

19 divides a(n) for n > 1.
Subsequence of A128360.

Crossrefs

Programs

  • PARI
    for( n=1, 10^6, Mod(20,n^2)^n - 1 || print1(n",")) \\ M. F. Hasler, Oct 20 2008

Extensions

a(4) from Max Alekseyev, Oct 18 2008
a(5)-a(7) from Max Alekseyev, May 06 2010

A177920 Numbers k such that k^3 divides 20^(k^2) - 1.

Original entry on oeis.org

1, 19, 7805561, 1432001198261, 3661225986659, 58130944174609, 187470481770989
Offset: 1

Views

Author

Alexander Adamchuk, May 14 2010

Keywords

Comments

19 divides a(n) for n > 1.

Crossrefs

Programs

  • Mathematica
    Join[{1}, Select[Range[10000000], PowerMod[20, #^2, #^3] == 1 &]] (* Robert Price, Apr 04 2020 *)

Extensions

a(4)-a(7) from Max Alekseyev, Oct 02 2010

A014960 Integers n such that n divides 24^n - 1.

Original entry on oeis.org

1, 23, 529, 1081, 12167, 24863, 50807, 279841, 571849, 1168561, 2387929, 2870377, 6436343, 7009273, 13152527, 15954479, 26876903, 54922367, 66018671, 112232663, 134907719, 148035889, 161213279, 302508121, 329435831
Offset: 1

Views

Author

Keywords

Comments

Also, numbers n such that n divides s(n), where s(1)=1, s(k)=s(k-1)+k*24^(k-1) (cf. A014942).
All n > 1 in the sequence are multiple of 23. - Conjectured by Thomas Baruchel, Oct 10 2003; proved by Max Alekseyev, Nov 16 2019
If n is a term and prime p|(24^n - 1), then n*p is a term. In particular, if n is a term and prime p|n, then n*p is a term. The smallest term with 3 distinct prime factors is a(16) = 15954479 = 23 * 47 * 14759. - Max Alekseyev, Nov 16 2019

Crossrefs

Prime factors are listed in A087807.
Cf. A014942.
Integers n such that n divides b^n - 1: A067945 (b=3), A014945 (b=4), A067946 (b=5), A014946 (b=6), A067947 (b=7), A014949 (b=8), A068382 (b=9), A014950 (b=10), A068383 (b=11), A014951 (b=12), A116621 (b=13), A014956 (b=14), A177805 (b=15), A014957 (b=16), A177807 (b=17), A128358 (b=18), A125000 (b=19), A128360 (b=20), A014959 (b=22).

Programs

  • Mathematica
    s = 1; Do[ If[ Mod[ s, n ] == 0, Print[n]]; s = s + (n + 1)*24^n, {n, 1, 100000}]
    Join[{1},Select[Range[330*10^6],PowerMod[24,#,#]==1&]] (* Harvey P. Dale, Jan 19 2023 *)

Extensions

More terms from Robert G. Wilson v, Sep 13 2000
a(9)-a(12) from Thomas Baruchel, Oct 10 2003
Edited and terms a(13) onward added by Max Alekseyev, Nov 16 2019

A014956 Positive integers k such that k divides 14^k - 1.

Original entry on oeis.org

1, 13, 169, 2041, 2197, 26533, 28561, 114413, 320437, 344929, 371293, 1487369, 4165681, 4484077, 4826809, 17962841, 19335797, 24355253, 50308609, 54153853, 58293001, 62748517, 77457601, 233516933, 249302027, 251365361, 316618289
Offset: 1

Views

Author

Keywords

Comments

Also, positive integers k such that k divides A014929(k).
13 divides a(n) for n > 1. All powers of 13 are terms. All a(n) that are not powers of 13 are divisible either by 157 or 677 or both. - Alexander Adamchuk, May 14 2010
Prime divisors of a(n) in order of appearance: {13, 157, 677, 11933, 122147, 52807, ...}. - Alexander Adamchuk, May 16 2010

Crossrefs

Programs

  • Mathematica
    Join[{1}, Select[Range[2000000], PowerMod[14, #, #] == 1 &]] (* Robert Price, Mar 31 2020 *)

Extensions

2 more terms from R. J. Mathar, Mar 05 2008
a(8)-a(23) from Alexander Adamchuk, May 14 2010
a(24)-a(44) from Alexander Adamchuk, May 16 2010
Edited by Max Alekseyev, Sep 10 2011

A014957 Positive integers k that divide 16^k - 1.

Original entry on oeis.org

1, 3, 5, 9, 15, 21, 25, 27, 39, 45, 55, 63, 75, 81, 105, 117, 125, 135, 147, 155, 165, 171, 189, 195, 205, 225, 243, 273, 275, 315, 333, 351, 375, 405, 441, 465, 495, 507, 513, 525, 567, 585, 605, 609, 615, 625, 657, 675, 729, 735, 775, 819, 825, 855, 903
Offset: 1

Views

Author

Keywords

Comments

Also, positive integers k that divide A014931(k).

Crossrefs

Programs

  • Mathematica
    Join[{1},Select[Range[1000],PowerMod[16,#,#]==1&]] (* Harvey P. Dale, Jun 12 2024 *)
  • Python
    A014957_list = [n for n in range(1,10**6) if n == 1 or pow(16,n,n) == 1] # Chai Wah Wu, Mar 25 2021

Extensions

Edited by Max Alekseyev, Sep 10 2011

A128356 Least number k > 1 (that is not the power of prime p) such that k divides (p+1)^k-1, where p = prime(n).

Original entry on oeis.org

20, 21, 1555, 889, 253, 2041, 5846759, 148305659, 1081, 279241, 9641, 950123, 33661, 63213709997, 583223, 3775349, 72707647, 149070763, 196932497, 5091481, 25760459, 14307947980741, 13861, 9362711, 376457, 132766545553, 63757
Offset: 1

Views

Author

Alexander Adamchuk, Mar 02 2007

Keywords

Comments

All listed terms have 2 distinct prime divisors. Most listed terms are semiprimes, except a(7) = 20231*17^2 and a(8) = 410819*19^2. p = prime(n) divides a(n). Quotients a(n)/prime(n) are listed in A128357 = {10, 7, 311, 127, 23, 157, 343927, ...}. a(15) = 583223 = 47*12409. a(16) = 3775349 = 53*71233.

Crossrefs

Programs

  • Mathematica
    (* This program is not suitable to compute a large number of terms *) a[n_] := For[p = Prime[n]; k = 2, True, k++, If[Length[FactorInteger[k]] == 2, If[Mod[PowerMod[p + 1, k, k] - 1, k] == 0, Print[k]; Return[k]]]]; Table[a[n], {n, 1, 13}] (* Jean-François Alcover, Oct 07 2013 *)

Extensions

Terms a(14) onwards from Max Alekseyev, Feb 08 2010

A128357 Quotients A128356(n)/prime(n).

Original entry on oeis.org

10, 7, 311, 127, 23, 157, 343927, 7805561, 47, 9629, 311, 25679, 821, 1470086279, 12409, 71233, 1232333, 2443783, 2939291, 71711, 352883, 181113265579, 167, 105199, 3881, 1314520253, 619, 20759, 117503, 1162660843, 1880415721, 263
Offset: 1

Views

Author

Alexander Adamchuk, Mar 02 2007, Mar 09 2007

Keywords

Comments

A128356 = {20, 21, 1555, 889, 253, 2041, 5846759, ...} = Least number k>1 (that is not the power of prime p) such that k divides (p+1)^k-1, where p = prime(n). Most listed terms are primes, except a(7) = 20231*17 and a(8) = 410819*19. a(15) = 12409. a(16) = 71233.
Note that all prime listed terms of {a(n)} coincide with terms of A128456 = {2, 7, 311, 127, 23, 157, 7563707819165039903, 75368484119, 47, 9629, 311, 25679, 821, ...} = least prime factor of ((p+1)^p - 1)/p^2, where p = prime(n).

Crossrefs

Cf. A128356 (least number k > 1 (that is not a power of prime p) such that k divides (p+1)^k-1, where p = prime(n)).
Cf. A128456 (least prime factor of ((p+1)^p - 1)/p^2, where p = prime(n)).

Extensions

Terms a(14) onwards from Max Alekseyev, Feb 08 2010

A177805 Numbers k such that k divides 15^k - 1.

Original entry on oeis.org

1, 2, 4, 7, 8, 14, 16, 28, 32, 49, 56, 64, 98, 112, 128, 136, 196, 224, 256, 272, 343, 392, 448, 452, 512, 544, 686, 784, 812, 896, 904, 952, 1024, 1088, 1372, 1568, 1624, 1792, 1808, 1904, 2048, 2176, 2312, 2401, 2744, 3136, 3164, 3248, 3584, 3616, 3808, 4096
Offset: 1

Views

Author

Alexander Adamchuk, May 17 2010

Keywords

Comments

A000420 are the only odd terms of the sequence. - Robert Israel, Feb 25 2020

Crossrefs

Programs

A177807 Numbers k that divide 17^k - 1.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 32, 36, 40, 42, 48, 54, 60, 64, 72, 78, 80, 84, 96, 100, 108, 116, 120, 126, 128, 144, 156, 160, 162, 168, 180, 192, 200, 216, 220, 232, 234, 240, 252, 256, 288, 294, 300, 312, 320, 324, 336, 342, 348, 360, 378, 384, 400, 420
Offset: 1

Views

Author

Alexander Adamchuk, May 17 2010

Keywords

Crossrefs

Programs

  • Mathematica
    {1}~Join~Select[Range[420], PowerMod[17, #, #] == 1 &] (* Giovanni Resta, Jan 30 2020 *)

A333432 A(n,k) is the n-th number m that divides k^m - 1 (or 0 if m does not exist); square array A(n,k), n>=1, k>=1, read by antidiagonals.

Original entry on oeis.org

1, 1, 2, 1, 0, 3, 1, 2, 0, 4, 1, 3, 4, 0, 5, 1, 2, 9, 8, 0, 6, 1, 5, 4, 21, 16, 0, 7, 1, 2, 25, 6, 27, 20, 0, 8, 1, 7, 3, 125, 8, 63, 32, 0, 9, 1, 2, 49, 4, 625, 12, 81, 40, 0, 10, 1, 3, 4, 343, 6, 1555, 16, 147, 64, 0, 11, 1, 2, 9, 8, 889, 8, 3125, 18, 171, 80, 0, 12
Offset: 1

Views

Author

Seiichi Manyama, Mar 21 2020

Keywords

Examples

			Square array A(n,k) begins:
  1, 1,  1,   1,  1,     1,  1,     1,  1, ...
  2, 0,  2,   3,  2,     5,  2,     7,  2, ...
  3, 0,  4,   9,  4,    25,  3,    49,  4, ...
  4, 0,  8,  21,  6,   125,  4,   343,  8, ...
  5, 0, 16,  27,  8,   625,  6,   889, 10, ...
  6, 0, 20,  63, 12,  1555,  8,  2359, 16, ...
  7, 0, 32,  81, 16,  3125,  9,  2401, 20, ...
  8, 0, 40, 147, 18,  7775, 12,  6223, 32, ...
  9, 0, 64, 171, 24, 15625, 16, 16513, 40, ...
		

Crossrefs

Programs

  • Maple
    A:= proc() local h, p; p:= proc() [1] end;
          proc(n, k) if k=2 then `if`(n=1, 1, 0) else
            while nops(p(k)) 1 do od;
              p(k):= [p(k)[], h]
            od; p(k)[n] fi
          end
        end():
    seq(seq(A(n, 1+d-n), n=1..d), d=1..12);  # Alois P. Heinz, Mar 24 2020
  • Mathematica
    A[n_, k_] := Module[{h, p}, p[_] = {1}; If[k == 2, If[n == 1, 1, 0], While[ Length[p[k]] < n, For[h = 1 + p[k][[-1]], Mod[k^h, h] != 1, h++]; p[k] = Append[p[k], h]]; p[k][[n]]]];
    Table[A[n, 1+d-n], {d, 1, 12}, {n, 1, d}] // Flatten (* Jean-François Alcover, Nov 01 2020, after Alois P. Heinz *)
Showing 1-10 of 14 results. Next