cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A157214 Decimal expansion of 18 + 5*sqrt(2).

Original entry on oeis.org

2, 5, 0, 7, 1, 0, 6, 7, 8, 1, 1, 8, 6, 5, 4, 7, 5, 2, 4, 4, 0, 0, 8, 4, 4, 3, 6, 2, 1, 0, 4, 8, 4, 9, 0, 3, 9, 2, 8, 4, 8, 3, 5, 9, 3, 7, 6, 8, 8, 4, 7, 4, 0, 3, 6, 5, 8, 8, 3, 3, 9, 8, 6, 8, 9, 9, 5, 3, 6, 6, 2, 3, 9, 2, 3, 1, 0, 5, 3, 5, 1, 9, 4, 2, 5, 1, 9, 3, 7, 6, 7, 1, 6, 3, 8, 2, 0, 7, 8, 6, 3, 6, 7, 5, 0
Offset: 2

Views

Author

Klaus Brockhaus, Feb 25 2009

Keywords

Comments

lim_{n -> infinity} b(n)/b(n-1) = (18+5*sqrt(2))/(18-5*sqrt(2)) for n mod 3 = {1, 2}, b = A129544.
lim_{n -> infinity} b(n)/b(n-1) = (18+5*sqrt(2))/(18-5*sqrt(2)) for n mod 3 = {0, 2}, b = A157213.

Examples

			18+5*sqrt(2) = 25.07106781186547524400...
		

Crossrefs

Cf. A129544, A157213, A157215 (decimal expansion of 18-5*sqrt(2)), A157216 (decimal expansion of (18-5*sqrt(2))/(18+5*sqrt(2))).

Programs

Formula

Equals 18 + 10*A010503. - R. J. Mathar, Feb 27 2009

A157215 Decimal expansion of 18 - 5*sqrt(2).

Original entry on oeis.org

1, 0, 9, 2, 8, 9, 3, 2, 1, 8, 8, 1, 3, 4, 5, 2, 4, 7, 5, 5, 9, 9, 1, 5, 5, 6, 3, 7, 8, 9, 5, 1, 5, 0, 9, 6, 0, 7, 1, 5, 1, 6, 4, 0, 6, 2, 3, 1, 1, 5, 2, 5, 9, 6, 3, 4, 1, 1, 6, 6, 0, 1, 3, 1, 0, 0, 4, 6, 3, 3, 7, 6, 0, 7, 6, 8, 9, 4, 6, 4, 8, 0, 5, 7, 4, 8, 0, 6, 2, 3, 2, 8, 3, 6, 1, 7, 9, 2, 1, 3, 6, 3, 2, 4, 9
Offset: 2

Views

Author

Klaus Brockhaus, Feb 25 2009

Keywords

Comments

lim_{n -> infinity} b(n)/b(n-1) = (18+5*sqrt(2))/(18-5*sqrt(2)) for n mod 3 = {1, 2}, b = A129544.
lim_{n -> infinity} b(n)/b(n-1) = (18+5*sqrt(2))/(18-5*sqrt(2)) for n mod 3 = {0, 2}, b = A157213.

Examples

			18 - 5*sqrt(2) = 10.92893218813452475599...
		

Crossrefs

Cf. A129544, A157213, A157214 (decimal expansion of 18+5*sqrt(2)), A157216 (decimal expansion of (18-5*sqrt(2))/(18+5*sqrt(2))).

Programs

A206426 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+161)^2 = y^2.

Original entry on oeis.org

0, 19, 60, 84, 115, 184, 231, 279, 400, 483, 580, 799, 931, 1104, 1495, 1764, 2040, 2739, 3220, 3783, 5056, 5824, 6831, 9108, 10675, 12283, 16356, 19159, 22440, 29859, 34335, 40204, 53475, 62608, 71980, 95719, 112056, 131179, 174420, 200508, 234715, 312064
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,0,0,0,0,0,0,0,6,-6,0,0,0,0,0,0,0,-1,1}, {0,19,60,84,115,184,231,279,400,483,580,799,931,1104,1495,1764,2040,2739,3220}, 120]

Formula

G.f.: x^2*(17*x^17 +27*x^16 +12*x^15 +13*x^14 +23*x^13 +13*x^12 +12*x^11 +27*x^10 +17*x^9 -83*x^8 -121*x^7 -48*x^6 -47*x^5 -69*x^4 -31*x^3 -24*x^2 -41*x -19)/((x -1)*(x^18 -6*x^9 +1)). - Colin Barker, Aug 05 2012

A157216 Decimal expansion of (18 + 5*sqrt(2))/(18 - 5*sqrt(2)).

Original entry on oeis.org

2, 2, 9, 4, 0, 0, 8, 9, 0, 9, 5, 8, 8, 1, 6, 4, 6, 3, 0, 5, 9, 9, 6, 4, 9, 5, 2, 6, 8, 5, 3, 0, 8, 6, 3, 2, 8, 9, 8, 7, 3, 7, 5, 6, 8, 4, 5, 5, 4, 1, 9, 9, 4, 6, 4, 1, 3, 0, 6, 6, 5, 5, 2, 1, 3, 0, 7, 7, 8, 0, 4, 6, 0, 3, 0, 3, 5, 7, 3, 9, 6, 7, 1, 2, 7, 9, 9, 1, 8, 1, 0, 8, 7, 2, 1, 7, 3, 2, 9, 5, 9, 5, 7, 3, 0
Offset: 1

Views

Author

Klaus Brockhaus, Feb 25 2009

Keywords

Comments

lim_{n -> infinity} b(n)/b(n-1) = (18+5*sqrt(2))/(18-5*sqrt(2)) for n mod 3 = {1, 2}, b = A129544.
lim_{n -> infinity} b(n)/b(n-1) = (18+5*sqrt(2))/(18-5*sqrt(2)) for n mod 3 = {0, 2}, b = A157213.

Examples

			(18 + 5*sqrt(2))/(18 - 5*sqrt(2)) = 2.29400890958816463059...
		

Crossrefs

Cf. A129544, A157213, A157214 (decimal expansion of 18+5*sqrt(2)), A157215 (decimal expansion of 18-5*sqrt(2)).

Programs

  • Magma
    (18+5*Sqrt(2))/(18-5*Sqrt(2)) // G. C. Greubel, Jan 27 2018
  • Mathematica
    With[{c=5Sqrt[2]},RealDigits[(18+c)/(18-c),10,120][[1]]] (* Harvey P. Dale, Dec 13 2011 *)
  • PARI
    (18+5*sqrt(2))/(18-5*sqrt(2)) \\ G. C. Greubel, Jan 27 2018
    

A157213 Positive numbers y such that y^2 is of the form x^2+(x+137)^2 with integer x.

Original entry on oeis.org

97, 137, 277, 305, 685, 1565, 1733, 3973, 9113, 10093, 23153, 53113, 58825, 134945, 309565, 342857, 786517, 1804277, 1998317, 4584157, 10516097, 11647045, 26718425, 61292305, 67883953, 155726393, 357237733, 395656673, 907639933
Offset: 1

Views

Author

Klaus Brockhaus, Feb 25 2009

Keywords

Comments

(-65, a(1)) and (A129544(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+137)^2 = y^2.

Examples

			(-65, a(1)) = (-65, 97) is a solution: (-65)^2+(-65+137)^2 = 4225+5184 = 9409 = 97^2.
(A129544(1), a(2)) = (0, 137) is a solution: 0^2+(0+137)^2 = 18769 = 137^2.
(A129544(3), a(4)) = (136, 305) is a solution: 136^2+(136+137)^2 = 18496+74529 = 93025 = 305^2.
		

Crossrefs

Cf. A129544, A001653, A157214 (decimal expansion of 18+5*sqrt(2)), A157215 (decimal expansion of 18-5*sqrt(2)), A157216 (decimal expansion of (18+5*sqrt(2))/(18-5*sqrt(2))).

Programs

  • PARI
    {forstep(n=-68, 1000000000, [3, 1], if(issquare(n^2+(n+137)^2,&k), print1(k, ",")))}

Formula

a(n) = 6*a(n-3)-a(n-6) for n > 6; a(1)=97, a(2)=137, a(3)=277, a(4)=305, a(5)=685, a(6)=1565.
G.f.: x*(1-x)*(97+234*x+511*x^2+234*x^3+97*x^4)/(1-6*x^3+x^6).
a(3*k-1) = 137*A001653(k) for k >= 1.
Limit_{n -> oo} a(n)/a(n-3) = 3+2*sqrt(2).
Limit_{n -> oo} a(n)/a(n-1) = (3+2*sqrt(2))*(18-5*sqrt(2))^2/(18+5*sqrt(2))^2 for n mod 3 = 1.
Limit_{n -> oo} a(n)/a(n-1) = (18+5*sqrt(2))/(18-5*sqrt(2)) for n mod 3 = {0, 2}.

A201916 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+2737)^2 = y^2.

Original entry on oeis.org

0, 75, 203, 323, 552, 708, 1020, 1127, 1311, 1428, 1608, 1820, 1955, 2336, 2675, 3128, 3311, 3627, 3927, 4140, 4508, 4743, 5535, 6003, 6800, 7280, 7848, 8211, 8588, 9240, 9860, 11063, 11895, 13583, 14168, 15180, 15827, 16827, 18011, 18768, 20915, 22836
Offset: 1

Views

Author

T. D. Noe, Feb 09 2012

Keywords

Comments

Note that 2737 = 7 * 17 * 23, the product of the first three distinct primes in A058529 (and A001132) and hence the smallest such number. This sequence satisfies a linear difference equation of order 55 whose 55 initial terms can be found by running the Mathematica program.
There are many sequences like this one. What determines the order of the linear difference equation? All primes p have order 7. For those p, it appears that p^2 has order 11, p^3 order 15, and p^i order 3+4*i. It appears that for semiprimes p*q (with p > q), the order is 19. What is the next term of the sequence beginning 3, 7, 19, 55, 163? This could be sequence A052919, which is 1 + 2*3^f, where f is the number of primes.
The crossref list is thought to be complete up to Feb 14 2012.

Crossrefs

Cf. A001652 (1), A076296 (7), A118120 (17), A118337 (23), A118674 (31).
Cf. A129288 (41), A118675 (47), A118554 (49), A118673 (71), A129289 (73).
Cf. A118676 (79), A129298 (89), A129836 (97), A157119 (103), A161478 (113).
Cf. A129837 (119), A129992 (127), A129544 (137), A161482 (151).
Cf. A206426 (161), A130608 (167), A161486 (191), A185394 (193).
Cf. A129993 (199), A198294 (217), A130609 (223), A129625 (233).
Cf. A204765 (239), A129991 (241), A207058 (263), A129626 (281).
Cf. A205644 (287), A207059 (289), A129640 (313), A205672 (329).
Cf. A129999 (337), A118611 (343), A130610 (359), A207060 (401).
Cf. A129641 (409), A207061 (433), A130645 (439), A130004 (449).
Cf. A129642 (457), A129725 (521), A101152 (569), A130005 (577).
Cf. A207075 (479), A207076 (487), A207077 (497), A207078 (511).
Cf. A111258 (601), A115135 (617), A130013 (647), A130646 (727).
Cf. A122694 (761), A123654 (809), A129010 (833), A130647 (839).
Cf. A129857 (857), A130014 (881), A129974 (937), A129975 (953).
Cf. A130017 (967), A118630 (2401), A118576 (16807).

Programs

  • Mathematica
    d = 2737; terms = 100; t = Select[Range[0, 55000], IntegerQ[Sqrt[#^2 + (#+d)^2]] &]; Do[AppendTo[t, t[[-1]] + 6*t[[-27]] - 6*t[[-28]] - t[[-54]] + t[[-55]]], {terms-55}]; t

Formula

a(n) = a(n-1) + 6*a(n-27) - 6*a(n-28) - a(n-54) + a(n-55), where the 55 initial terms can be computed using the Mathematica program.
G.f.: x^2*(73*x^53 +116*x^52 +100*x^51 +171*x^50 +104*x^49 +184*x^48 +57*x^47 +92*x^46 +55*x^45 +80*x^44 +88*x^43 +53*x^42 +139*x^41 +113*x^40 +139*x^39 +53*x^38 +88*x^37 +80*x^36 +55*x^35 +92*x^34 +57*x^33 +184*x^32 +104*x^31 +171*x^30 +100*x^29 +116*x^28 +73*x^27 -363*x^26 -568*x^25 -480*x^24 -797*x^23 -468*x^22 -792*x^21 -235*x^20 -368*x^19 -213*x^18 -300*x^17 -316*x^16 -183*x^15 -453*x^14 -339*x^13 -381*x^12 -135*x^11 -212*x^10 -180*x^9 -117*x^8 -184*x^7 -107*x^6 -312*x^5 -156*x^4 -229*x^3 -120*x^2 -128*x -75) / ((x -1)*(x^54 -6*x^27 +1)). - Colin Barker, May 18 2015
Showing 1-6 of 6 results.