cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A174968 Decimal expansion of (1 + sqrt(2))/2.

Original entry on oeis.org

1, 2, 0, 7, 1, 0, 6, 7, 8, 1, 1, 8, 6, 5, 4, 7, 5, 2, 4, 4, 0, 0, 8, 4, 4, 3, 6, 2, 1, 0, 4, 8, 4, 9, 0, 3, 9, 2, 8, 4, 8, 3, 5, 9, 3, 7, 6, 8, 8, 4, 7, 4, 0, 3, 6, 5, 8, 8, 3, 3, 9, 8, 6, 8, 9, 9, 5, 3, 6, 6, 2, 3, 9, 2, 3, 1, 0, 5, 3, 5, 1, 9, 4, 2, 5, 1, 9, 3, 7, 6, 7, 1, 6, 3, 8, 2, 0, 7, 8, 6, 3, 6, 7, 5, 0
Offset: 1

Views

Author

Klaus Brockhaus, Apr 02 2010

Keywords

Comments

a(n) is the diameter of the circle around the Vitruvian Man when the square has sides of unit length. See illustration in links. - Kival Ngaokrajang, Jan 29 2015
The iterated function z^2 - 1/4, starting from z = 0, gives a pretty good rational approximation of (-1)((1 + sqrt(2))/2 - 1) to more than eight decimal digits after just twenty steps. - Alonso del Arte, Apr 09 2016
This sequence describes the minimum Euclidean length of the optimal solution of the well-known Nine dots puzzle, published in Sam Loyd’s Cyclopedia of puzzles (1914), p. 301 since a valid polygonal chain satisfying the conditions of the above-mentioned problem is (0, 1)-(0, 3)-(3, 0)-(0, 0)-(2, 2), and its total length is equal to 5*(1 + sqrt(2)) = 12.071... (i.e., 10*(1 + sqrt(2))/2). - Marco Ripà, Jul 22 2024

Examples

			1.20710678118654752440084436210484903928483593768847...
		

Crossrefs

Cf. A002193 (decimal expansion of sqrt(2)), A010685 (continued fraction expansion of (1 + sqrt(2))/2), A079291, A249403.
Apart from initial digits the same as A157214 and A010503.

Programs

Formula

Equals Product_{k>=2} (1 + (-1)^k/A079291(k)). - Amiram Eldar, Dec 03 2024

A157215 Decimal expansion of 18 - 5*sqrt(2).

Original entry on oeis.org

1, 0, 9, 2, 8, 9, 3, 2, 1, 8, 8, 1, 3, 4, 5, 2, 4, 7, 5, 5, 9, 9, 1, 5, 5, 6, 3, 7, 8, 9, 5, 1, 5, 0, 9, 6, 0, 7, 1, 5, 1, 6, 4, 0, 6, 2, 3, 1, 1, 5, 2, 5, 9, 6, 3, 4, 1, 1, 6, 6, 0, 1, 3, 1, 0, 0, 4, 6, 3, 3, 7, 6, 0, 7, 6, 8, 9, 4, 6, 4, 8, 0, 5, 7, 4, 8, 0, 6, 2, 3, 2, 8, 3, 6, 1, 7, 9, 2, 1, 3, 6, 3, 2, 4, 9
Offset: 2

Views

Author

Klaus Brockhaus, Feb 25 2009

Keywords

Comments

lim_{n -> infinity} b(n)/b(n-1) = (18+5*sqrt(2))/(18-5*sqrt(2)) for n mod 3 = {1, 2}, b = A129544.
lim_{n -> infinity} b(n)/b(n-1) = (18+5*sqrt(2))/(18-5*sqrt(2)) for n mod 3 = {0, 2}, b = A157213.

Examples

			18 - 5*sqrt(2) = 10.92893218813452475599...
		

Crossrefs

Cf. A129544, A157213, A157214 (decimal expansion of 18+5*sqrt(2)), A157216 (decimal expansion of (18-5*sqrt(2))/(18+5*sqrt(2))).

Programs

A129544 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+137)^2 = y^2.

Original entry on oeis.org

0, 115, 136, 411, 1036, 1155, 2740, 6375, 7068, 16303, 37488, 41527, 95352, 218827, 242368, 556083, 1275748, 1412955, 3241420, 7435935, 8235636, 18892711, 43340136, 48001135, 110115120, 252605155, 279771448, 641798283, 1472291068, 1630627827, 3740674852
Offset: 1

Views

Author

Mohamed Bouhamida, May 30 2007

Keywords

Comments

Also values x of Pythagorean triples (x, x+137, y).
Corresponding values y of solutions (x, y) are in A157213.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (18+5*sqrt(2))/(18-5*sqrt(2)) for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (3+2*sqrt(2))*(18-5*sqrt(2))^2/(18+5*sqrt(2))^2 for n mod 3 = 0.

Crossrefs

Cf. A157213, A001652, A157214 (decimal expansion of 18+5*sqrt(2)), A157215 (decimal expansion of 18-5*sqrt(2)), A157216 (decimal expansion of (18+5*sqrt(2))/(18-5*sqrt(2))), A129288, A129289, A129298.

Programs

  • Mathematica
    LinearRecurrence[{1,0,6,-6,0,-1,1},{0,115,136,411,1036,1155,2740},80] (* Vladimir Joseph Stephan Orlovsky, Feb 07 2012 *)
  • PARI
    {forstep(n=0, 1500000000, [3, 1], if(issquare(2*n^2+274*n+18769), print1(n, ",")))}

Formula

a(n) = 6*a(n-3)-a(n-6)+274 for n > 6; a(1)=0, a(2)=115, a(3)=136, a(4)=411, a(5)=1036, a(6)=1155.
G.f.: x*(115+21*x+275*x^2-65*x^3-7*x^4-65*x^5)/((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 137*A001652(k) for k >= 0.

Extensions

Edited and extended by Klaus Brockhaus, Feb 25 2009

A157216 Decimal expansion of (18 + 5*sqrt(2))/(18 - 5*sqrt(2)).

Original entry on oeis.org

2, 2, 9, 4, 0, 0, 8, 9, 0, 9, 5, 8, 8, 1, 6, 4, 6, 3, 0, 5, 9, 9, 6, 4, 9, 5, 2, 6, 8, 5, 3, 0, 8, 6, 3, 2, 8, 9, 8, 7, 3, 7, 5, 6, 8, 4, 5, 5, 4, 1, 9, 9, 4, 6, 4, 1, 3, 0, 6, 6, 5, 5, 2, 1, 3, 0, 7, 7, 8, 0, 4, 6, 0, 3, 0, 3, 5, 7, 3, 9, 6, 7, 1, 2, 7, 9, 9, 1, 8, 1, 0, 8, 7, 2, 1, 7, 3, 2, 9, 5, 9, 5, 7, 3, 0
Offset: 1

Views

Author

Klaus Brockhaus, Feb 25 2009

Keywords

Comments

lim_{n -> infinity} b(n)/b(n-1) = (18+5*sqrt(2))/(18-5*sqrt(2)) for n mod 3 = {1, 2}, b = A129544.
lim_{n -> infinity} b(n)/b(n-1) = (18+5*sqrt(2))/(18-5*sqrt(2)) for n mod 3 = {0, 2}, b = A157213.

Examples

			(18 + 5*sqrt(2))/(18 - 5*sqrt(2)) = 2.29400890958816463059...
		

Crossrefs

Cf. A129544, A157213, A157214 (decimal expansion of 18+5*sqrt(2)), A157215 (decimal expansion of 18-5*sqrt(2)).

Programs

  • Magma
    (18+5*Sqrt(2))/(18-5*Sqrt(2)) // G. C. Greubel, Jan 27 2018
  • Mathematica
    With[{c=5Sqrt[2]},RealDigits[(18+c)/(18-c),10,120][[1]]] (* Harvey P. Dale, Dec 13 2011 *)
  • PARI
    (18+5*sqrt(2))/(18-5*sqrt(2)) \\ G. C. Greubel, Jan 27 2018
    

A268683 Decimal expansion of (sqrt(2) - 1)/2.

Original entry on oeis.org

2, 0, 7, 1, 0, 6, 7, 8, 1, 1, 8, 6, 5, 4, 7, 5, 2, 4, 4, 0, 0, 8, 4, 4, 3, 6, 2, 1, 0, 4, 8, 4, 9, 0, 3, 9, 2, 8, 4, 8, 3, 5, 9, 3, 7, 6, 8, 8, 4, 7, 4, 0, 3, 6, 5, 8, 8, 3, 3, 9, 8, 6, 8, 9, 9, 5, 3, 6, 6, 2, 3, 9, 2, 3, 1, 0, 5, 3, 5, 1, 9, 4, 2, 5, 1, 9, 3
Offset: 0

Views

Author

Keywords

Comments

This is the maximum increase in mass-energy a particle can carry away from a neutral rotating (Kerr) black hole via the Penrose process.
Apart from leading digits the same as A174968, A157214 and A010503. - R. J. Mathar, Feb 24 2016

Examples

			0.20710678118654752440084436210484903928483593768847403658833986899536623...
		

References

  • Subrahmanyan Chandrasekhar, The Mathematical Theory of Black Holes, Oxford (1983), pp. 368-369.

Crossrefs

Programs

Extensions

More digits from Jon E. Schoenfield, Mar 15 2018

A157213 Positive numbers y such that y^2 is of the form x^2+(x+137)^2 with integer x.

Original entry on oeis.org

97, 137, 277, 305, 685, 1565, 1733, 3973, 9113, 10093, 23153, 53113, 58825, 134945, 309565, 342857, 786517, 1804277, 1998317, 4584157, 10516097, 11647045, 26718425, 61292305, 67883953, 155726393, 357237733, 395656673, 907639933
Offset: 1

Views

Author

Klaus Brockhaus, Feb 25 2009

Keywords

Comments

(-65, a(1)) and (A129544(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+137)^2 = y^2.

Examples

			(-65, a(1)) = (-65, 97) is a solution: (-65)^2+(-65+137)^2 = 4225+5184 = 9409 = 97^2.
(A129544(1), a(2)) = (0, 137) is a solution: 0^2+(0+137)^2 = 18769 = 137^2.
(A129544(3), a(4)) = (136, 305) is a solution: 136^2+(136+137)^2 = 18496+74529 = 93025 = 305^2.
		

Crossrefs

Cf. A129544, A001653, A157214 (decimal expansion of 18+5*sqrt(2)), A157215 (decimal expansion of 18-5*sqrt(2)), A157216 (decimal expansion of (18+5*sqrt(2))/(18-5*sqrt(2))).

Programs

  • PARI
    {forstep(n=-68, 1000000000, [3, 1], if(issquare(n^2+(n+137)^2,&k), print1(k, ",")))}

Formula

a(n) = 6*a(n-3)-a(n-6) for n > 6; a(1)=97, a(2)=137, a(3)=277, a(4)=305, a(5)=685, a(6)=1565.
G.f.: x*(1-x)*(97+234*x+511*x^2+234*x^3+97*x^4)/(1-6*x^3+x^6).
a(3*k-1) = 137*A001653(k) for k >= 1.
Limit_{n -> oo} a(n)/a(n-3) = 3+2*sqrt(2).
Limit_{n -> oo} a(n)/a(n-1) = (3+2*sqrt(2))*(18-5*sqrt(2))^2/(18+5*sqrt(2))^2 for n mod 3 = 1.
Limit_{n -> oo} a(n)/a(n-1) = (18+5*sqrt(2))/(18-5*sqrt(2)) for n mod 3 = {0, 2}.

A351898 Decimal expansion of metallic ratio for N = 14.

Original entry on oeis.org

1, 4, 0, 7, 1, 0, 6, 7, 8, 1, 1, 8, 6, 5, 4, 7, 5, 2, 4, 4, 0, 0, 8, 4, 4, 3, 6, 2, 1, 0, 4, 8, 4, 9, 0, 3, 9, 2, 8, 4, 8, 3, 5, 9, 3, 7, 6, 8, 8, 4, 7, 4, 0, 3, 6, 5, 8, 8, 3, 3, 9, 8, 6, 8, 9, 9, 5, 3, 6, 6, 2, 3, 9, 2, 3, 1, 0, 5, 3, 5, 1, 9, 4, 2, 5, 1, 9
Offset: 2

Views

Author

A.H.M. Smeets, Feb 24 2022

Keywords

Comments

Decimal expansion of continued fraction [14; 14, 14, 14, ...].
Also largest solution of x^2 - 14 x - 1 = 0.
Essentially the same digit sequence as A010503, A157214, A174968 and A268683.
The metallic ratio's for N = A077444(n) are equal to powers of the silver ratio, i.e., A014166^(2n-1); this constant represents the special case for N = A077444(2).

Examples

			14.0710678118654752440084436210484903928483593...
		

Crossrefs

Metallic ratios: A001622 (N=1), A014176 (N=2), A098316 (N=3), A098317 (N=4), A098318 (N=5), A176398 (N=6), A176439 (N=7), A176458 (N=8), A176522 (N=9), A176537 (N=10), A244593 (N=11).

Programs

  • Mathematica
    RealDigits[7 + 5*Sqrt[2], 10, 100][[1]] (* Amiram Eldar, Feb 24 2022 *)
  • PARI
    (1+sqrt(2))^3

Formula

Equals 2 + 5*A014176.
Equals A014176^3.
Equals exp(arcsinh(7)). - Amiram Eldar, Jul 04 2023
Showing 1-7 of 7 results.