cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A268682 Decimal expansion of 1 - 1/sqrt(2).

Original entry on oeis.org

2, 9, 2, 8, 9, 3, 2, 1, 8, 8, 1, 3, 4, 5, 2, 4, 7, 5, 5, 9, 9, 1, 5, 5, 6, 3, 7, 8, 9, 5, 1, 5, 0, 9, 6, 0, 7, 1, 5, 1, 6, 4, 0, 6, 2, 3, 1, 1, 5, 2, 5, 9, 6, 3, 4, 1, 1, 6, 6, 0, 1, 3, 1, 0, 0, 4, 6, 3, 3, 7, 6, 0, 7, 6, 8, 9, 4, 6, 4, 8, 0, 5, 7, 4, 8, 0, 6
Offset: 0

Views

Author

Keywords

Comments

This is the maximum fraction of mass-energy of a black hole which can come from angular momentum, and hence the maximum energy which can be extracted from the black hole via the Penrose process.
Differs from A157215 only in one or two leading digits. - R. J. Mathar, Feb 24 2016
This is the probability that a randomly selected vertex in a random Schroeder tree is a leaf as the number of leaves goes to infinity. See Corollary 2.1.2. of Van Duzer. - Michel Marcus, Apr 12 2019

Examples

			0.29289321881345247559915563789515096071516406231152596341166013100463376...
		

References

  • Charles D. Dermer and Govind Menon, High Energy Radiation from Black Holes: Gamma Rays, Cosmic Rays, and Neutrinos (2009). See pp. 400-402.

Crossrefs

Programs

Formula

Equals 1 - A010503.
a(n) = 9 - A010503(n). - Philippe Deléham, Feb 21 2016
Equals Integral_{x=0..Pi/4} sin(x) dx. - Amiram Eldar, Jun 29 2020

Extensions

More digits from Jon E. Schoenfield, Mar 15 2018

A157214 Decimal expansion of 18 + 5*sqrt(2).

Original entry on oeis.org

2, 5, 0, 7, 1, 0, 6, 7, 8, 1, 1, 8, 6, 5, 4, 7, 5, 2, 4, 4, 0, 0, 8, 4, 4, 3, 6, 2, 1, 0, 4, 8, 4, 9, 0, 3, 9, 2, 8, 4, 8, 3, 5, 9, 3, 7, 6, 8, 8, 4, 7, 4, 0, 3, 6, 5, 8, 8, 3, 3, 9, 8, 6, 8, 9, 9, 5, 3, 6, 6, 2, 3, 9, 2, 3, 1, 0, 5, 3, 5, 1, 9, 4, 2, 5, 1, 9, 3, 7, 6, 7, 1, 6, 3, 8, 2, 0, 7, 8, 6, 3, 6, 7, 5, 0
Offset: 2

Views

Author

Klaus Brockhaus, Feb 25 2009

Keywords

Comments

lim_{n -> infinity} b(n)/b(n-1) = (18+5*sqrt(2))/(18-5*sqrt(2)) for n mod 3 = {1, 2}, b = A129544.
lim_{n -> infinity} b(n)/b(n-1) = (18+5*sqrt(2))/(18-5*sqrt(2)) for n mod 3 = {0, 2}, b = A157213.

Examples

			18+5*sqrt(2) = 25.07106781186547524400...
		

Crossrefs

Cf. A129544, A157213, A157215 (decimal expansion of 18-5*sqrt(2)), A157216 (decimal expansion of (18-5*sqrt(2))/(18+5*sqrt(2))).

Programs

Formula

Equals 18 + 10*A010503. - R. J. Mathar, Feb 27 2009

A129544 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+137)^2 = y^2.

Original entry on oeis.org

0, 115, 136, 411, 1036, 1155, 2740, 6375, 7068, 16303, 37488, 41527, 95352, 218827, 242368, 556083, 1275748, 1412955, 3241420, 7435935, 8235636, 18892711, 43340136, 48001135, 110115120, 252605155, 279771448, 641798283, 1472291068, 1630627827, 3740674852
Offset: 1

Views

Author

Mohamed Bouhamida, May 30 2007

Keywords

Comments

Also values x of Pythagorean triples (x, x+137, y).
Corresponding values y of solutions (x, y) are in A157213.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (18+5*sqrt(2))/(18-5*sqrt(2)) for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (3+2*sqrt(2))*(18-5*sqrt(2))^2/(18+5*sqrt(2))^2 for n mod 3 = 0.

Crossrefs

Cf. A157213, A001652, A157214 (decimal expansion of 18+5*sqrt(2)), A157215 (decimal expansion of 18-5*sqrt(2)), A157216 (decimal expansion of (18+5*sqrt(2))/(18-5*sqrt(2))), A129288, A129289, A129298.

Programs

  • Mathematica
    LinearRecurrence[{1,0,6,-6,0,-1,1},{0,115,136,411,1036,1155,2740},80] (* Vladimir Joseph Stephan Orlovsky, Feb 07 2012 *)
  • PARI
    {forstep(n=0, 1500000000, [3, 1], if(issquare(2*n^2+274*n+18769), print1(n, ",")))}

Formula

a(n) = 6*a(n-3)-a(n-6)+274 for n > 6; a(1)=0, a(2)=115, a(3)=136, a(4)=411, a(5)=1036, a(6)=1155.
G.f.: x*(115+21*x+275*x^2-65*x^3-7*x^4-65*x^5)/((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 137*A001652(k) for k >= 0.

Extensions

Edited and extended by Klaus Brockhaus, Feb 25 2009

A157216 Decimal expansion of (18 + 5*sqrt(2))/(18 - 5*sqrt(2)).

Original entry on oeis.org

2, 2, 9, 4, 0, 0, 8, 9, 0, 9, 5, 8, 8, 1, 6, 4, 6, 3, 0, 5, 9, 9, 6, 4, 9, 5, 2, 6, 8, 5, 3, 0, 8, 6, 3, 2, 8, 9, 8, 7, 3, 7, 5, 6, 8, 4, 5, 5, 4, 1, 9, 9, 4, 6, 4, 1, 3, 0, 6, 6, 5, 5, 2, 1, 3, 0, 7, 7, 8, 0, 4, 6, 0, 3, 0, 3, 5, 7, 3, 9, 6, 7, 1, 2, 7, 9, 9, 1, 8, 1, 0, 8, 7, 2, 1, 7, 3, 2, 9, 5, 9, 5, 7, 3, 0
Offset: 1

Views

Author

Klaus Brockhaus, Feb 25 2009

Keywords

Comments

lim_{n -> infinity} b(n)/b(n-1) = (18+5*sqrt(2))/(18-5*sqrt(2)) for n mod 3 = {1, 2}, b = A129544.
lim_{n -> infinity} b(n)/b(n-1) = (18+5*sqrt(2))/(18-5*sqrt(2)) for n mod 3 = {0, 2}, b = A157213.

Examples

			(18 + 5*sqrt(2))/(18 - 5*sqrt(2)) = 2.29400890958816463059...
		

Crossrefs

Cf. A129544, A157213, A157214 (decimal expansion of 18+5*sqrt(2)), A157215 (decimal expansion of 18-5*sqrt(2)).

Programs

  • Magma
    (18+5*Sqrt(2))/(18-5*Sqrt(2)) // G. C. Greubel, Jan 27 2018
  • Mathematica
    With[{c=5Sqrt[2]},RealDigits[(18+c)/(18-c),10,120][[1]]] (* Harvey P. Dale, Dec 13 2011 *)
  • PARI
    (18+5*sqrt(2))/(18-5*sqrt(2)) \\ G. C. Greubel, Jan 27 2018
    

A157213 Positive numbers y such that y^2 is of the form x^2+(x+137)^2 with integer x.

Original entry on oeis.org

97, 137, 277, 305, 685, 1565, 1733, 3973, 9113, 10093, 23153, 53113, 58825, 134945, 309565, 342857, 786517, 1804277, 1998317, 4584157, 10516097, 11647045, 26718425, 61292305, 67883953, 155726393, 357237733, 395656673, 907639933
Offset: 1

Views

Author

Klaus Brockhaus, Feb 25 2009

Keywords

Comments

(-65, a(1)) and (A129544(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+137)^2 = y^2.

Examples

			(-65, a(1)) = (-65, 97) is a solution: (-65)^2+(-65+137)^2 = 4225+5184 = 9409 = 97^2.
(A129544(1), a(2)) = (0, 137) is a solution: 0^2+(0+137)^2 = 18769 = 137^2.
(A129544(3), a(4)) = (136, 305) is a solution: 136^2+(136+137)^2 = 18496+74529 = 93025 = 305^2.
		

Crossrefs

Cf. A129544, A001653, A157214 (decimal expansion of 18+5*sqrt(2)), A157215 (decimal expansion of 18-5*sqrt(2)), A157216 (decimal expansion of (18+5*sqrt(2))/(18-5*sqrt(2))).

Programs

  • PARI
    {forstep(n=-68, 1000000000, [3, 1], if(issquare(n^2+(n+137)^2,&k), print1(k, ",")))}

Formula

a(n) = 6*a(n-3)-a(n-6) for n > 6; a(1)=97, a(2)=137, a(3)=277, a(4)=305, a(5)=685, a(6)=1565.
G.f.: x*(1-x)*(97+234*x+511*x^2+234*x^3+97*x^4)/(1-6*x^3+x^6).
a(3*k-1) = 137*A001653(k) for k >= 1.
Limit_{n -> oo} a(n)/a(n-3) = 3+2*sqrt(2).
Limit_{n -> oo} a(n)/a(n-1) = (3+2*sqrt(2))*(18-5*sqrt(2))^2/(18+5*sqrt(2))^2 for n mod 3 = 1.
Limit_{n -> oo} a(n)/a(n-1) = (18+5*sqrt(2))/(18-5*sqrt(2)) for n mod 3 = {0, 2}.

A335094 Decimal expansion of (15 - 4*sqrt(2))/8.

Original entry on oeis.org

1, 1, 6, 7, 8, 9, 3, 2, 1, 8, 8, 1, 3, 4, 5, 2, 4, 7, 5, 5, 9, 9, 1, 5, 5, 6, 3, 7, 8, 9, 5, 1, 5, 0, 9, 6, 0, 7, 1, 5, 1, 6, 4, 0, 6, 2, 3, 1, 1, 5, 2, 5, 9, 6, 3, 4, 1, 1, 6, 6, 0, 1, 3, 1, 0, 0, 4, 6, 3, 3, 7, 6, 0, 7, 6, 8, 9, 4, 6, 4, 8, 0, 5, 7, 4, 8, 0, 6, 2, 3, 2, 8, 3, 6, 1, 7, 9, 2, 1, 3, 6, 3
Offset: 1

Views

Author

Jeremy Tan, Sep 12 2020

Keywords

Comments

Largest overhang off an edge achievable with four unit-length bricks.
Corresponding values for one, two and three bricks are 1/2, 3/4 and 1 respectively.

Examples

			1.1678932188134524755991556378951...
		

Crossrefs

Cf. A020761 (1/2), A152627 (3/4).

Programs

  • Mathematica
    First@ RealDigits@ N[(15 - 4 Sqrt[2])/8, 102]
  • PARI
    (15-4*sqrt(2))/8
Showing 1-6 of 6 results.