cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A157214 Decimal expansion of 18 + 5*sqrt(2).

Original entry on oeis.org

2, 5, 0, 7, 1, 0, 6, 7, 8, 1, 1, 8, 6, 5, 4, 7, 5, 2, 4, 4, 0, 0, 8, 4, 4, 3, 6, 2, 1, 0, 4, 8, 4, 9, 0, 3, 9, 2, 8, 4, 8, 3, 5, 9, 3, 7, 6, 8, 8, 4, 7, 4, 0, 3, 6, 5, 8, 8, 3, 3, 9, 8, 6, 8, 9, 9, 5, 3, 6, 6, 2, 3, 9, 2, 3, 1, 0, 5, 3, 5, 1, 9, 4, 2, 5, 1, 9, 3, 7, 6, 7, 1, 6, 3, 8, 2, 0, 7, 8, 6, 3, 6, 7, 5, 0
Offset: 2

Views

Author

Klaus Brockhaus, Feb 25 2009

Keywords

Comments

lim_{n -> infinity} b(n)/b(n-1) = (18+5*sqrt(2))/(18-5*sqrt(2)) for n mod 3 = {1, 2}, b = A129544.
lim_{n -> infinity} b(n)/b(n-1) = (18+5*sqrt(2))/(18-5*sqrt(2)) for n mod 3 = {0, 2}, b = A157213.

Examples

			18+5*sqrt(2) = 25.07106781186547524400...
		

Crossrefs

Cf. A129544, A157213, A157215 (decimal expansion of 18-5*sqrt(2)), A157216 (decimal expansion of (18-5*sqrt(2))/(18+5*sqrt(2))).

Programs

Formula

Equals 18 + 10*A010503. - R. J. Mathar, Feb 27 2009

A157215 Decimal expansion of 18 - 5*sqrt(2).

Original entry on oeis.org

1, 0, 9, 2, 8, 9, 3, 2, 1, 8, 8, 1, 3, 4, 5, 2, 4, 7, 5, 5, 9, 9, 1, 5, 5, 6, 3, 7, 8, 9, 5, 1, 5, 0, 9, 6, 0, 7, 1, 5, 1, 6, 4, 0, 6, 2, 3, 1, 1, 5, 2, 5, 9, 6, 3, 4, 1, 1, 6, 6, 0, 1, 3, 1, 0, 0, 4, 6, 3, 3, 7, 6, 0, 7, 6, 8, 9, 4, 6, 4, 8, 0, 5, 7, 4, 8, 0, 6, 2, 3, 2, 8, 3, 6, 1, 7, 9, 2, 1, 3, 6, 3, 2, 4, 9
Offset: 2

Views

Author

Klaus Brockhaus, Feb 25 2009

Keywords

Comments

lim_{n -> infinity} b(n)/b(n-1) = (18+5*sqrt(2))/(18-5*sqrt(2)) for n mod 3 = {1, 2}, b = A129544.
lim_{n -> infinity} b(n)/b(n-1) = (18+5*sqrt(2))/(18-5*sqrt(2)) for n mod 3 = {0, 2}, b = A157213.

Examples

			18 - 5*sqrt(2) = 10.92893218813452475599...
		

Crossrefs

Cf. A129544, A157213, A157214 (decimal expansion of 18+5*sqrt(2)), A157216 (decimal expansion of (18-5*sqrt(2))/(18+5*sqrt(2))).

Programs

A129544 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+137)^2 = y^2.

Original entry on oeis.org

0, 115, 136, 411, 1036, 1155, 2740, 6375, 7068, 16303, 37488, 41527, 95352, 218827, 242368, 556083, 1275748, 1412955, 3241420, 7435935, 8235636, 18892711, 43340136, 48001135, 110115120, 252605155, 279771448, 641798283, 1472291068, 1630627827, 3740674852
Offset: 1

Views

Author

Mohamed Bouhamida, May 30 2007

Keywords

Comments

Also values x of Pythagorean triples (x, x+137, y).
Corresponding values y of solutions (x, y) are in A157213.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (18+5*sqrt(2))/(18-5*sqrt(2)) for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (3+2*sqrt(2))*(18-5*sqrt(2))^2/(18+5*sqrt(2))^2 for n mod 3 = 0.

Crossrefs

Cf. A157213, A001652, A157214 (decimal expansion of 18+5*sqrt(2)), A157215 (decimal expansion of 18-5*sqrt(2)), A157216 (decimal expansion of (18+5*sqrt(2))/(18-5*sqrt(2))), A129288, A129289, A129298.

Programs

  • Mathematica
    LinearRecurrence[{1,0,6,-6,0,-1,1},{0,115,136,411,1036,1155,2740},80] (* Vladimir Joseph Stephan Orlovsky, Feb 07 2012 *)
  • PARI
    {forstep(n=0, 1500000000, [3, 1], if(issquare(2*n^2+274*n+18769), print1(n, ",")))}

Formula

a(n) = 6*a(n-3)-a(n-6)+274 for n > 6; a(1)=0, a(2)=115, a(3)=136, a(4)=411, a(5)=1036, a(6)=1155.
G.f.: x*(115+21*x+275*x^2-65*x^3-7*x^4-65*x^5)/((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 137*A001652(k) for k >= 0.

Extensions

Edited and extended by Klaus Brockhaus, Feb 25 2009

A157213 Positive numbers y such that y^2 is of the form x^2+(x+137)^2 with integer x.

Original entry on oeis.org

97, 137, 277, 305, 685, 1565, 1733, 3973, 9113, 10093, 23153, 53113, 58825, 134945, 309565, 342857, 786517, 1804277, 1998317, 4584157, 10516097, 11647045, 26718425, 61292305, 67883953, 155726393, 357237733, 395656673, 907639933
Offset: 1

Views

Author

Klaus Brockhaus, Feb 25 2009

Keywords

Comments

(-65, a(1)) and (A129544(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+137)^2 = y^2.

Examples

			(-65, a(1)) = (-65, 97) is a solution: (-65)^2+(-65+137)^2 = 4225+5184 = 9409 = 97^2.
(A129544(1), a(2)) = (0, 137) is a solution: 0^2+(0+137)^2 = 18769 = 137^2.
(A129544(3), a(4)) = (136, 305) is a solution: 136^2+(136+137)^2 = 18496+74529 = 93025 = 305^2.
		

Crossrefs

Cf. A129544, A001653, A157214 (decimal expansion of 18+5*sqrt(2)), A157215 (decimal expansion of 18-5*sqrt(2)), A157216 (decimal expansion of (18+5*sqrt(2))/(18-5*sqrt(2))).

Programs

  • PARI
    {forstep(n=-68, 1000000000, [3, 1], if(issquare(n^2+(n+137)^2,&k), print1(k, ",")))}

Formula

a(n) = 6*a(n-3)-a(n-6) for n > 6; a(1)=97, a(2)=137, a(3)=277, a(4)=305, a(5)=685, a(6)=1565.
G.f.: x*(1-x)*(97+234*x+511*x^2+234*x^3+97*x^4)/(1-6*x^3+x^6).
a(3*k-1) = 137*A001653(k) for k >= 1.
Limit_{n -> oo} a(n)/a(n-3) = 3+2*sqrt(2).
Limit_{n -> oo} a(n)/a(n-1) = (3+2*sqrt(2))*(18-5*sqrt(2))^2/(18+5*sqrt(2))^2 for n mod 3 = 1.
Limit_{n -> oo} a(n)/a(n-1) = (18+5*sqrt(2))/(18-5*sqrt(2)) for n mod 3 = {0, 2}.
Showing 1-4 of 4 results.