cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A130130 a(0)=0, a(1)=1, a(n)=2 for n >= 2.

Original entry on oeis.org

0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 0

Views

Author

Paul Curtz, Aug 01 2007

Keywords

Comments

a(n) is also total number of positive integers below 10^(n+1) requiring 9 positive cubes in their representation as sum of cubes (cf. Dickson, 1939).
A061439(n) + A181375(n) + A181377(n) + A181379(n) + A181381(n) + A181400(n) + A181402(n) + A181404(n) + a(n) = A002283(n).
a(n) = number of obvious divisors of n. The obvious divisors of n are the numbers 1 and n. - Jaroslav Krizek, Mar 02 2009
Number of colors needed to paint n adjacent segments on a line. - Jaume Oliver Lafont, Mar 20 2009
a(n) = ceiling(n-th nonprimes/n) = ceiling(A018252(n)/A000027(n)) for n >= 1. Numerators of (A018252(n)/A000027(n)) in A171529(n), denominators of (A018252(n)/A000027(n)) in A171530(n). a(n) = A171624(n) + 1 for n >= 5. - Jaroslav Krizek, Dec 13 2009
a(n) is also the continued fraction for sqrt(1/2). - Enrique Pérez Herrero, Jul 12 2010
For n >= 1, a(n) = minimal number of divisors of any n-digit number. See A066150 for maximal number of divisors of any n-digit number. - Jaroslav Krizek, Jul 18 2010
Central terms in the triangle A051010. - Reinhard Zumkeller, Jun 27 2013
Decimal expansion of 11/900. - Elmo R. Oliveira, May 05 2024

Crossrefs

Programs

Formula

G.f.: x*(1+x)/(1-x) = x*(1-x^2)/(1-x)^2. - Jaume Oliver Lafont, Mar 20 2009
a(n) = A000005(n) - A070824(n) for n >= 1.
E.g.f.: 2*exp(x) - x - 2. - Stefano Spezia, May 19 2024