A130519 a(n) = Sum_{k=0..n} floor(k/4). (Partial sums of A002265.)
0, 0, 0, 0, 1, 2, 3, 4, 6, 8, 10, 12, 15, 18, 21, 24, 28, 32, 36, 40, 45, 50, 55, 60, 66, 72, 78, 84, 91, 98, 105, 112, 120, 128, 136, 144, 153, 162, 171, 180, 190, 200, 210, 220, 231, 242, 253, 264, 276, 288, 300, 312, 325, 338, 351, 364, 378, 392, 406, 420, 435, 450
Offset: 0
Examples
G.f. = x^4 + 2*x^5 + 3*x^6 + 4*x^7 + 6*x^8 + 8*x^9 + 10*x^10 + 12*x^11 + ... [ n] a(n) --------- [ 4] 1 [ 5] 2 [ 6] 3 [ 7] 4 [ 8] 1 + 5 [ 9] 2 + 6 [10] 3 + 7 [11] 4 + 8
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Bakir Farhi, On the Representation of the Natural Numbers as the Sum of Three Terms of the Sequence floor(n^2/a), Journal of Integer Sequences, Vol. 16 (2013), Article 13.6.4.
- Darren Glass and Joshua Wagner, Arithmetical Structures on Paths With a Doubled Edge, arXiv:1903.01398 [math.CO], 2019.
- Nathan Pflueger, On non-primitive Weierstrass points, Alg. Number Th. 12 (2018) 1923-1947 and arXiv:1608.0566 [math.AG], 2016.
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,1,-2,1).
Crossrefs
Programs
-
GAP
a:=List([0..65],n->Sum([0..n],k->Int(k/4)));; Print(a); # Muniru A Asiru, Jan 04 2019
-
Magma
[Round(n*(n-2)/8): n in [0..70]]; // Vincenzo Librandi, Jun 25 2011
-
Maple
quadsum := n -> add(k, k = select(k -> k mod 4 = n mod 4, [$1 .. n])): A130519 := n ->`if`(n<3,0,quadsum(n-3)); seq(A130519(n),n=0..58); # Peter Luschny, Jul 06 2011
-
Mathematica
a[ n_] := Quotient[ (n - 1)^2, 8]; (* Michael Somos, Oct 14 2011 *)
-
Maxima
makelist(floor((n-1)^2/8), n, 0, 70); /* Stefano Spezia, Jan 04 2019 */
-
PARI
{a(n) = (n - 1)^2 \ 8}; /* Michael Somos, Oct 14 2011 */
-
Python
def A130519(n): return (n-1)**2>>3 # Chai Wah Wu, Jul 30 2022
Formula
G.f.: x^4/((1-x^4)*(1-x)^2) = x^4/((1+x)*(1+x^2)*(1-x)^3).
a(n) = +2*a(n-1) -1*a(n-2) +1*a(n-4) -2*a(n-5) +1*a(n-6).
a(n) = floor((n-1)^2/8). - Mitch Harris, Sep 08 2008
a(n) = round(n*(n-2)/8) = round((n^2-2*n-1)/8) = ceiling((n+1)*(n-3)/8). - Mircea Merca, Nov 28 2010
a(n) = A001972(n-4), n>3. - Franklin T. Adams-Watters, Jul 10 2009
a(n) = a(n-4)+n-3, n>3. - Mircea Merca, Nov 28 2010
Euler transform of length 4 sequence [ 2, 0, 0, 1]. - Michael Somos, Oct 14 2011
a(n) = a(2-n) for all n in Z. - Michael Somos, Oct 14 2011
a(n) = A214734(n, 1, 4). - Renzo Benedetti, Aug 27 2012
a(4n) = A000384(n), a(4n+1) = A001105(n), a(4n+2) = A014105(n), a(4n+3) = A046092(n). - Philippe Deléham, Mar 26 2013
a(n) = Sum_{i=1..ceiling(n/2)-1} (i mod 2) * (n - 2*i - 1). - Wesley Ivan Hurt, Jan 23 2014
a(n) = ( 2*n^2-4*n-1+(-1)^n+2*((-1)^((2*n-1+(-1)^n)/4)-(-1)^((6*n-1+(-1)^n)/4)) )/16 = ( 2*n*(n-2) - (1-(-1)^n)*(1-2*i^(n*(n-1))) )/16, where i=sqrt(-1). - Luce ETIENNE, Aug 29 2014
E.g.f.: (1/8)*((- 1 + x)*x*cosh(x) + 2*sin(x) + (- 1 - x + x^2)*sinh(x)). - Stefano Spezia, Jan 15 2019
Sum_{n>=4} 1/a(n) = Pi^2/12 + 5/2. - Amiram Eldar, Aug 13 2022
Extensions
Partially edited by R. J. Mathar, Jul 11 2009
Comments