cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A092109 Primes p such that p+3 is a semiprime.

Original entry on oeis.org

3, 7, 11, 19, 23, 31, 43, 59, 71, 79, 83, 103, 131, 139, 163, 191, 199, 211, 223, 251, 271, 311, 331, 359, 379, 383, 419, 443, 463, 479, 499, 523, 563, 619, 631, 659, 691, 743, 839, 859, 863, 883, 911, 919, 971, 1039, 1091, 1123, 1151, 1171, 1223, 1231, 1259
Offset: 1

Views

Author

Zak Seidov, Feb 21 2004

Keywords

Comments

Primes p such that p-3 is semiprime are in A089531; p and 2p+3 both prime, A023204; p, 2p-3 and 2p+3 prime, A092110.
Primes p such that (p+3)/2 is prime. All these primes are congruent to 3 mod 4. - Artur Jasinski, Oct 11 2008
Subsequence of A131426. - Zak Seidov, Mar 29 2015
Subsequence of A091305. - David Radcliffe, May 22 2022

Crossrefs

Programs

  • Magma
    IsSemiprime:=func< p | &+[ k[2]: k in Factorization(p)] eq 2 >; [p: p in PrimesUpTo(1300)| IsSemiprime(p+3)]; // Vincenzo Librandi, Feb 21 2014
    
  • Maple
    select(p -> isprime(p) and isprime((p+3)/2), [seq(2*k+1,k=1..1000)]); # Robert Israel, Mar 29 2015
  • Mathematica
    aa = {}; k = 3; Do[If[PrimeQ[(k + Prime[n])/2], AppendTo[aa, Prime[n]]], {n, 1, 100}]; aa (* Artur Jasinski, Oct 11 2008 *)
    Select[Prime[Range[300]],PrimeOmega[#+3]==2&] (* Harvey P. Dale, Feb 07 2018 *)
  • PARI
    is(n)=n%2 && isprime((n+3)/2) && isprime(n) \\ Charles R Greathouse IV, Jul 12 2016

Formula

a(n) = 2*A063908(n)-3 = 4*A115334(n)+3. - Artur Jasinski, Oct 11 2008

A139291 a(n) = 2^(2*prime(n) - 3) - 1.

Original entry on oeis.org

1, 7, 127, 2047, 524287, 8388607, 2147483647, 34359738367, 8796093022207, 36028797018963967, 576460752303423487, 2361183241434822606847, 604462909807314587353087, 9671406556917033397649407, 2475880078570760549798248447, 10141204801825835211973625643007
Offset: 1

Views

Author

Omar E. Pol, Apr 13 2008

Keywords

Crossrefs

Programs

  • Mathematica
    (2^(2#-1))/4-1&/@Prime[Range[20]] (* Harvey P. Dale, May 08 2011 *)

Formula

a(n) = A139286(n)/4 - 1.
a(n) = A000225(A131426(n)). - Max Alekseyev, Mar 07 2020
a(n) = A139290(n) - 1. - Omar E. Pol, Mar 10 2020

Extensions

Edited by Max Alekseyev, May 03 2009, Mar 07 2020

A131424 Triangle read by rows: T(n,k) = prime(n) + prime(k) - 3, 1 <= k <= n.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 6, 7, 9, 11, 10, 11, 13, 15, 19, 12, 13, 15, 17, 21, 23, 16, 17, 19, 21, 25, 27, 31, 18, 19, 21, 23, 27, 29, 33, 35, 22, 23, 25, 27, 31, 33, 37, 39, 43, 28, 29, 31, 33, 37, 39, 43, 45, 49, 55, 30, 31, 33, 35, 39, 41, 45, 47, 51, 57, 59
Offset: 1

Views

Author

Gary W. Adamson, Jul 10 2007

Keywords

Comments

Left border = A006093, (primes - 1): (1, 2, 4, 6, 10, 12, ...). Right border = A131426 (2*primes - 3): (1, 3, 7, 11, 19, 23, 31, ...). Row sums = A131425: (1, 5, 16, 33, 68, 101, 156, ...).

Examples

			First few rows of the triangle are:
   1;
   2,  3;
   4,  5,  7;
   6,  7,  9, 11;
  10, 11, 13, 15, 19;
  12, 13, 15, 17, 21, 23;
  16, 17, 19, 21, 25, 27, 31;
  18, 19, 21, 23, 27, 29, 33, 35;
  22, 23, 25, 27, 31, 33, 37, 39, 43;
...
		

Crossrefs

Row sums are A131425.

Programs

  • Mathematica
    T[n_,k_]:=Prime[n]+Prime[k]-3;Table[T[n,k],{n,11},{k,n}]//Flatten (* James C. McMahon, Feb 20 2025 *)
  • PARI
    T(n,k) = if(k<=n, prime(n) + prime(k) - 3, 0) \\ Andrew Howroyd, Sep 01 2018

Formula

Equals (A000012 * A127640) + (A127640 * A000012) - 3*A000012 as infinite lower triangular matrices.

Extensions

Name clarified and terms a(56) and beyond from Andrew Howroyd, Sep 01 2018

A131425 Row sums of triangle A131424.

Original entry on oeis.org

1, 5, 16, 33, 68, 101, 156, 205, 280, 389, 468, 605, 732, 841, 988, 1181, 1392, 1545, 1784, 1999, 2182, 2463, 2714, 3027, 3410, 3709, 3964, 4283, 4554, 4893, 5564, 5947, 6410, 6751, 7386, 7755, 8282, 8827, 9310, 9887, 10482, 10923, 11722, 12191, 12758, 13243
Offset: 1

Views

Author

Gary W. Adamson, Jul 10 2007

Keywords

Examples

			a(4) = 33 = sum of row 4 terms of triangle A131424: (6 + 7 + 9 + 11).
		

Crossrefs

Programs

  • Mathematica
    Table[n (Prime[n]-3)+Sum[Prime[k],{k,n}],{n,50}] (* Harvey P. Dale, Nov 28 2024 *)
  • PARI
    a(n)={n*(prime(n) - 3) + sum(k=1, n, prime(k))} \\ Andrew Howroyd, Aug 28 2018

Formula

a(n) = n*(prime(n) - 3) + Sum_{k=1..n} prime(k). - Andrew Howroyd, Aug 28 2018

Extensions

Terms a(10) and beyond from Andrew Howroyd, Aug 28 2018

A172256 Primes p such that 2*p+-3 are both nonprimes.

Original entry on oeis.org

59, 61, 79, 103, 109, 131, 149, 151, 163, 179, 239, 257, 271, 281, 293, 313, 359, 367, 389, 401, 419, 449, 479, 491, 499, 541, 569, 571, 593, 601, 619, 673, 677, 683, 691, 709, 719, 733, 761, 769, 821, 823, 829, 839, 857, 877, 883, 911, 919, 947, 953, 971, 983, 1009
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jan 30 2010

Keywords

Comments

In the first 10000 primes there are 5698 terms (~57% of the primes). In the 10000 primes from prime(1,000,000,000) to prime(1,000,010,000) there are 8432 primes in this sequence or ~84%. It seems likely the density of these terms within the primes slowly approaches 100%. This indicates the density of "Prime Septets", as defined in A268593 (which rely upon primes in the complement of this sequence), declines steadily at larger n. - Richard R. Forberg, Feb 12 2016

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(1100)| not IsPrime(2*p+3)and not IsPrime(2*p-3)] // Vincenzo Librandi, Dec 08 2010
    
  • Mathematica
    npQ[n_]:=Module[{c=2n},!PrimeQ[c+3]&&!PrimeQ[c-3]]; Select[Prime[ Range[ 200]],npQ] (* Harvey P. Dale, Jan 21 2013 *)
    Select[Prime[Range[200]],NoneTrue[2#+{3,-3},PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 25 2019 *)
  • PARI
    isok(p) = isprime(p) && !isprime(2*p+3) && !isprime(2*p-3); \\ Michel Marcus, Feb 12 2016

Extensions

Corrected and extended by Vincenzo Librandi, Apr 01 2010

A169605 Numbers x of the form x = 2*y - 3 = 3*z - 2 where y and z are primes.

Original entry on oeis.org

7, 19, 31, 55, 91, 139, 175, 199, 211, 379, 391, 451, 499, 535, 631, 715, 919, 931, 1039, 1135, 1291, 1315, 1399, 1435, 1639, 1711, 1759, 1819, 1855, 1891, 1939, 2179, 2215, 2359, 2431, 2515, 2575, 2719, 2731, 2899, 2971, 3115, 3271, 3691, 3775, 3955, 4195
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Dec 03 2009

Keywords

Examples

			a(1)=7 because 5*2 - 3 = 3*3 - 2;
a(2)=19 because 11*2 - 3 = 7*3 - 2.
		

Crossrefs

Programs

  • Maple
    isA169605 := proc(x) if type(x+3,'even') then if (x+2) mod 3 = 0 then isprime( (x+3)/2) and isprime((x+2)/3) ; else false ; end if else false; end if; end proc: for x from 1 to 10000 do if isA169605(x) then printf("%d,",x) ; end if; end do: # R. J. Mathar, Jan 27 2010
  • Mathematica
    Select[3Prime[Range[250]]-2,PrimeQ[(3+#)/2]&] (* Harvey P. Dale, May 11 2011 *)
  • Sage
    is_prime_Q = lambda x: x.is_integral() and Integer(x).is_prime()
    A169605 = list(x for x in range(1, 10**4) if is_prime_Q((x+3)/2) and
    is_prime_Q((x+2)/3))
    A169605[:36]
    # D. S. McNeil, Dec 21 2009

Extensions

Corrected and extended by Jim Nastos and D. S. McNeil, Dec 21 2009
A few more terms from R. J. Mathar, Jan 27 2010

A172258 Primes p such that exactly one of the numbers 2p-3 and 2p+3 is prime.

Original entry on oeis.org

2, 3, 11, 19, 23, 29, 31, 37, 41, 47, 71, 73, 83, 89, 101, 107, 139, 173, 181, 191, 197, 199, 211, 227, 229, 233, 241, 251, 263, 269, 277, 307, 311, 317, 331, 337, 347, 349, 353, 373, 379, 383, 397, 409, 421, 431, 433, 439, 443, 457, 461, 463, 467, 503, 509
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jan 30 2010

Keywords

Examples

			a(1)=2 because 2*2-3=1 (nonprime) and 2*2+3=7 (prime);
a(2)=29 because 2*29-3=55 (nonprime) and 2*29+3=61 (prime).
		

Crossrefs

Programs

  • Maple
    a := proc (n): if isprime(n) = true and isprime(2*n-3) = true and isprime(2*n+3) = false then n elif isprime(n) = true and isprime(2*n-3) = false and isprime(2*n+3) = true then n else end if end proc: seq(a(n), n = 1 .. 700); # Emeric Deutsch, Feb 15 2010
  • Mathematica
    Select[Prime[Range[100]],Total[Boole[PrimeQ[2#+{3,-3}]]]==1&] (* Harvey P. Dale, Mar 27 2021 *)

Extensions

Definition edited by Emeric Deutsch, Feb 15 2010
Corrected and extended by Emeric Deutsch, Feb 15 2010
Showing 1-7 of 7 results.