cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A131531 Period 6: repeat [0, 0, 1, 0, 0, -1].

Original entry on oeis.org

0, 0, 1, 0, 0, -1, 0, 0, 1, 0, 0, -1, 0, 0, 1, 0, 0, -1, 0, 0, 1, 0, 0, -1, 0, 0, 1, 0, 0, -1, 0, 0, 1, 0, 0, -1, 0, 0, 1, 0, 0, -1, 0, 0, 1, 0, 0, -1, 0, 0, 1, 0, 0, -1, 0, 0, 1, 0, 0, -1, 0, 0, 1, 0, 0, -1, 0, 0, 1, 0, 0, -1, 0, 0, 1, 0, 0, -1, 0, 0, 1, 0, 0, -1, 0, 0, 1, 0, 0, -1, 0, 0
Offset: 1

Views

Author

Paul Curtz, Aug 26 2007

Keywords

Comments

Also: partial sums of A092220 shifted by two indices. - R. J. Mathar, Feb 08 2008
From Paul Curtz, Jun 05 2011: (Start)
The square array of this sequence in the top row and further rows defined as first differences of preceding rows starts (see A167613):
. 0, 0, 1, 0, 0, -1, ...
. 0, 1, -1, 0, -1, 1, ... = A092220,
. 1, -2, 1, -1, 2, -1, ... = A131556,
. -3, 3, -2, 3, -3 2, ...
. 6, -5, 5, -6, 5, -5, ...
. -11, 10, -11, 11, -10, 11, ...
. 21, -21, 22, -21, 21, -22, ...
. -42, 43, -43, 42, -43, 43, ...
The main diagonal in this array is A001045; the first superdiagonal is the negated elements of A001045, the second superdiagonal is A078008.
The left column of the array is basically the inverse binomial transform, (-1)^n * A024495(n), assuming offset 0.
The second column of the array is A131708 with alternating signs, and the third column is A024493 with alternating signs (both assuming offset 0). (End)

Crossrefs

Programs

Formula

G.f.: x^3/(x+1)/(x^2-x+1). - R. J. Mathar, Nov 14 2007
a(n) = (-A057079(n+1) - (-1)^n)/3. - R. J. Mathar, Jun 13 2011
a(n) = -cos(Pi*(n-1)/3)/3 + sin(Pi*(n-1)/3)/sqrt(3) - (-1)^n/3. - R. J. Mathar, Oct 08 2011
a(n) = ( (-1)^n - (-1)^floor((n+2)/3) )/2. - Bruno Berselli, Jul 09 2013
a(n) + a(n-3) = 0 for n > 3. - Wesley Ivan Hurt, Jun 20 2016

Extensions

Edited by N. J. A. Sloane, Sep 15 2007

A131090 First differences of A131666.

Original entry on oeis.org

0, 1, 0, 1, 1, 4, 7, 15, 28, 57, 113, 228, 455, 911, 1820, 3641, 7281, 14564, 29127, 58255, 116508, 233017, 466033, 932068, 1864135, 3728271, 7456540, 14913081, 29826161, 59652324, 119304647, 238609295, 477218588, 954437177, 1908874353
Offset: 0

Views

Author

Paul Curtz, Sep 24 2007

Keywords

Comments

The first differences b(n)=a(n+1)-a(n) obey the recurrence b(n+1)-2b(n) = (-3,3,-2,3,-3,2), continued with period 6.
The 2nd differences c(n)=b(n+1)-b(n) obey the recurrence c(n+1)-2c(n) = (6,-5,5,-6,5,-5), periodically continued with period 6.
The hexaperiodic coefficients in these recurrences for A113405, A131666 and their higher order differences define a table,
0, 0, 1, 0, 0, -1 <- A113405
0, 1, -1, 0, -1, 1 <- A131666
1, -2, 1, -1, 2, -1 <- a(n)
-3, 3, -2, 3, -3, 2 <- b(n)
6, -5, 5, -6, 5, -5 <- c(n)
-11,10,-11, 11,-10, 11
21,-21,22,-21, 21,-22
...
in which the first three columns are A024495, A131708 and A024493, multiplied by a checkerboard pattern of signs.

Programs

  • Mathematica
    LinearRecurrence[{2,0,-1,2},{0,1,0,1},40] (* Harvey P. Dale, Jan 15 2016 *)

Formula

a(n) = A131666(n+1)-A131666(n).
a(n+1)-2a(n) = A131556(n), a sequence with period length 6.
G.f.: -(x-1)^2*x / ((x+1)*(2*x-1)*(x^2-x+1)). - Colin Barker, Mar 04 2013

Extensions

Edited by R. J. Mathar, Jun 28 2008

A167613 Array T(n,k) read by antidiagonals: the k-th term of the n-th difference of A131531.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 0, -1, -2, -3, 0, 0, 1, 3, 6, -1, -1, -1, -2, -5, -11, 0, 1, 2, 3, 5, 10, 21, 0, 0, -1, -3, -6, -11, -21, -42, 1, 1, 1, 2, 5, 11, 22, 43, 85, 0, -1, -2, -3, -5, -10, -21, -43, -86, -171, 0, 0, 1, 3, 6, 11, 21, 42, 85, 171, 342, -1, -1, -1, -2, -5, -11, -22, -43, -85, -170, -341, -683, 0, 1, 2, 3, 5, 10, 21, 43, 86, 171, 341, 682, 1365
Offset: 0

Views

Author

Paul Curtz, Nov 07 2009

Keywords

Comments

The array contains A131708(0) in diagonal 0, then -A024495(0..1) in diagonal 1, then A024493(0..2) in diagonal 2, then -A131708(0..3), then A024495(0..4), then -A024493(0..5).

Examples

			The table starts in row n=0 with columns k >= 0 as:
0, 0, 1, 0, 0, -1, 0, 0, 1, 0, 0, -1, 0, 0, 1, 0, 0, -1, 0, 0, 1, 0, 0 A131531
0, 1, -1, 0, -1, 1, 0, 1, -1, 0, -1, 1, 0, 1, -1, 0, -1, 1, 0, 1, -1 A092220
1, -2, 1, -1, 2, -1, 1, -2, 1, -1, 2, -1, 1, -2, 1, -1, 2, -1, 1, -2 A131556
-3, 3, -2, 3, -3, 2, -3, 3, -2, 3, -3, 2, -3, 3, -2, 3, -3, 2, -3 A164359
6, -5, 5, -6, 5, -5, 6, -5, 5, -6, 5, -5, 6, -5, 5, -6, 5, -5, 6, -5
-11, 10, -11, 11, -10, 11, -11, 10, -11, 11, -10, 11, -11, 10, -11
21, -21, 22, -21, 21, -22, 21, -21, 22, -21, 21, -22, 21, -21, 22
		

Crossrefs

Cf. A167617 (antidiagonal sums).

Programs

  • Maple
    A131531 := proc(n) op((n mod 6)+1,[0,0,1,0,0,-1]) ; end proc:
    A167613 := proc(n,k) option remember; if n= 0 then A131531(k); else procname(n-1,k+1)-procname(n-1,k) ; end if;end proc: # R. J. Mathar, Dec 17 2010
  • Mathematica
    nmax = 13;
    A131531 = Table[{0, 0, 1, 0, 0, -1}, {nmax}] // Flatten;
    T[n_] := T[n] = Differences[A131531, n];
    T[n_, k_] := T[n][[k]];
    Table[T[n-k, k], {n, 1, nmax}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Oct 20 2023 *)

Formula

T(0,k) = A131531(k). T(n,k) = T(n-1,k+1) - T(n-1,k), n > 0.
T(n,n) = A001045(n). T(n,n+1) = -A001045(n). T(n,n+2) = A078008(n).
T(n,0) = -T(n,3) = (-1)^(n+1)*A024495(n).
T(n,1) = (-1)^(n+1)*A131708(n).
T(n,2) = (-1)^n*A024493(n).
T(n,k+6) = T(n,k).
a(n) = A131708(0), -A024495(0,1), A024493(0,1,2), -A131708(0,1,2,3), A024495(0,1,2,3,4), -A024493(0,1,2,3,4,5).

A177702 Period 3: repeat [1, 1, 2].

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2
Offset: 0

Views

Author

Klaus Brockhaus, May 11 2010

Keywords

Comments

Continued fraction expansion of (2+sqrt(10))/3.
Decimal expansion of 112/999.
a(n) = A131534(n+2) = |A132419(n)| = |A132367(n)| = |A131556(n+2)|= |A122876(n)|.

Crossrefs

Programs

  • Magma
    &cat[ [1, 1, 2]: k in [1..35] ];
    
  • Maple
    seq(op([1, 1, 2]), n=1..50); # Wesley Ivan Hurt, Jul 01 2016
  • Mathematica
    PadRight[{},120,{1,1,2}] (* or *) LinearRecurrence[{0,0,1},{1,1,2},120] (* Harvey P. Dale, Dec 19 2014 *)
  • PARI
    a(n)=max(n%3,1) \\ Charles R Greathouse IV, Jul 17 2016

Formula

a(n) = a(n-3) for n > 2, with a(0) = 1, a(1) = 1, a(2) = 2.
G.f.: (1+x+2*x^2)/(1-x^3).
a(n) = 4/3 - cos(2*Pi*n/3)/3 - sin(2*Pi*n/3)/sqrt(3). - R. J. Mathar, Oct 08 2011
a(n) = 1 + A022003(n). - Wesley Ivan Hurt, Jul 01 2016

A131714 Period 6: repeat [1, -2, 2, -1, 2, -2].

Original entry on oeis.org

1, -2, 2, -1, 2, -2, 1, -2, 2, -1, 2, -2, 1, -2, 2, -1, 2, -2, 1, -2, 2, -1, 2, -2, 1, -2, 2, -1, 2, -2, 1, -2, 2, -1, 2, -2, 1, -2, 2, -1, 2, -2, 1, -2, 2, -1, 2, -2, 1, -2, 2, -1, 2, -2, 1, -2, 2, -1, 2, -2, 1, -2, 2, -1, 2, -2, 1, -2, 2, -1, 2, -2, 1, -2
Offset: 0

Views

Author

Paul Curtz, Sep 14 2007

Keywords

Crossrefs

Programs

Formula

G.f.: (1-2*x+2*x^2)/(x+1)/(x^2-x+1). - R. J. Mathar, Nov 14 2007
From Wesley Ivan Hurt, Jun 19 2016: (Start)
a(n) + a(n-3) = 0 for n>2.
a(n) = (5*cos(n*Pi)-2*cos(n*Pi/3))/3. (End)

A135261 a(n) = 3*A131090(n) - A131090(n+1).

Original entry on oeis.org

-1, 3, -1, 2, -1, 5, 6, 17, 27, 58, 111, 229, 454, 913, 1819, 3642, 7279, 14565, 29126, 58257, 116507, 233018, 466031, 932069, 1864134, 3728273, 7456539, 14913082, 29826159, 59652325, 119304646, 238609297, 477218587, 954437178, 1908874351, 3817748709, 7635497414
Offset: 0

Views

Author

Paul Curtz, Dec 01 2007

Keywords

Programs

  • GAP
    a:=[-1,2,-1,2];; for n in [5..40] do a[n]:=2*a[n-1] -a[n-3] +2*a[n-4]; od; a; # G. C. Greubel, Nov 21 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x)^2*(1-3*x)/((2*x-1)*(1+x)*(x^2-x+1)) )); // G. C. Greubel, Nov 21 2019
    
  • Maple
    seq(coeff(series((1-x)^2*(1-3*x)/((2*x-1)*(1+x)*(x^2-x+1)), x, n+1), x, n), n = 0 .. 40); # G. C. Greubel, Nov 21 2019
  • Mathematica
    LinearRecurrence[{2,0,-1,2}, {-1,3,-1,2}, 40] (* G. C. Greubel, Oct 07 2016 *)
  • PARI
    my(x='x+O('x^40)); Vec((1-x)^2*(1-3*x)/((2*x-1)*(1+x)*(x^2-x+1))) \\ G. C. Greubel, Nov 21 2019
    
  • Sage
    def A135261_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1-x)^2*(1-3*x)/((2*x-1)*(1+x)*(x^2-x+1))).list()
    A135261_list(40) # G. C. Greubel, Nov 21 2019
    

Formula

A131090(n) - a(n) = A131556(n).
O.g.f.: (1-x)^2*(1-3*x)/((2*x-1)*(1+x)*(x^2-x+1)). - R. J. Mathar, Jul 22 2008
a(n) = 2*a(n-1) - a(n-3) + 2*a(n-4). - G. C. Greubel, Oct 07 2016

Extensions

Edited and extended by R. J. Mathar, Jul 22 2008
Showing 1-6 of 6 results.