cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A138279 Last digit of A136324. After 0, 1, period 4: repeat [1, 2, 5, 6] = A131800.

Original entry on oeis.org

0, 1, 1, 2, 5, 6, 1, 2, 5, 6, 1, 2, 5, 6, 1, 2, 5, 6, 1, 2, 5, 6, 1, 2, 5, 6, 1, 2, 5, 6, 1, 2, 5, 6, 1, 2, 5, 6, 1, 2, 5, 6, 1, 2, 5, 6, 1, 2, 5, 6, 1, 2, 5, 6, 1, 2, 5, 6, 1, 2, 5, 6, 1, 2, 5, 6, 1, 2, 5, 6, 1, 2, 5, 6, 1, 2, 5, 6, 1, 2, 5, 6, 1, 2, 5, 6
Offset: 0

Views

Author

Paul Curtz, May 06 2008

Keywords

Crossrefs

Programs

  • Magma
    [0,1] cat &cat [[1, 2, 5, 6]^^30]; // Wesley Ivan Hurt, Jul 08 2016
  • Maple
    0,1,seq(op([1, 2, 5, 6]), n=0..50); # Wesley Ivan Hurt, Jul 08 2016
  • Mathematica
    PadRight[{0,1}, 120, {5,6,1,2}] (* Harvey P. Dale, Jul 14 2014 *)
  • PARI
    a(n)=if(n>1,[6,1,2,5][n%4+1],n)
    
  • PARI
    concat(0, Vec((x+x^2+2*x^3+5*x^4+5*x^5)/(1-x^4) + O(x^99))) \\ Altug Alkan, Jul 08 2016
    

Formula

From Wesley Ivan Hurt, Jul 08 2016: (Start)
G.f.: (x+x^2+2*x^3+5*x^4+5*x^5)/(1-x^4).
a(n) = a(n-4) for n>5.
a(n) = (7 - I^(2*n) + (2 + 2*I)*I^(-n) + (2 - 2*I)*I^n)/2 for n>1. (End)

A173315 Inverse binomial transform of A131800.

Original entry on oeis.org

1, 1, 2, -4, 0, 16, -48, 96, -160, 256, -448, 896, -1920, 4096, -8448, 16896, -33280, 65536, -130048, 260096, -522240, 1048576, -2101248, 4202496, -8396800, 16777216, -33538048, 67076096, -134184960, 268435456, -536936448, 1073872896, -2147614720, 4294967296
Offset: 0

Views

Author

Paul Curtz, Feb 16 2010

Keywords

Crossrefs

Cf. A106603.

Formula

A131800(n) = A000111(n+2) mod 10.
a(n)= -4*a(n-1) -6*a(n-2) -4*a(n-3), n>3. G.f.: (5*x+12*x^2+14*x^3+1)/((2*x+1)*(2*x^2+2*x+1)).

Extensions

Extended, keyword:sign added by R. J. Mathar, Feb 24 2010

A010696 Periodic sequence: Repeat 2,6.

Original entry on oeis.org

2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2, 6, 2
Offset: 0

Views

Author

Keywords

Comments

Original name: Period 2.
Also continued fraction expansion of 1+(2/3)*sqrt(3). - Bruno Berselli, Sep 22 2011

Crossrefs

Cf. A174114. [From Reinhard Zumkeller, Mar 08 2010]

Programs

  • Mathematica
    PadRight[{}, 100, {2, 6}] (* Paolo Xausa, Feb 22 2024 *)

Formula

G.f.: ( -2-6*x ) / ( (x-1)*(1+x) ). - R. J. Mathar, Jul 07 2011
a(n) = a(-n) = 2*A010684(n) = A131800(2n+1) = A010123(2n+2). - Bruno Berselli, Sep 22 2011

Extensions

Definition rewritten by Bruno Berselli, Sep 22 2011

A180343 a(0)=-4; a(n+1) = 2*a(n) + period 4: repeat 6,1,2,5.

Original entry on oeis.org

-4, -2, -3, -4, -3, 0, 1, 4, 13, 32, 65, 132, 269, 544, 1089, 2180, 4365, 8736, 17473, 34948, 69901, 139808, 279617, 559236, 1118477, 2236960, 4473921, 8947844, 17895693, 35791392, 71582785, 143165572, 286331149, 572662304, 1145324609, 2290649220, 4581298445
Offset: 0

Views

Author

Paul Curtz, Jan 18 2011

Keywords

Comments

Period 4:repeat 6,1,2,5 = A131800(n-1).

Examples

			a(1) = 2*(-4) + 6 = -2;
a(2) = 2*(-2) + 1 = -3;
a(3) = 2*(-3) + 2 = -4;
a(4) = 2*(-4) + 5 = -3;
a(5) = 2*(-3) + 6 =  0.
		

Programs

  • Magma
    I:=[-4, -2, -3, -4, -3]; [n le 5 select I[n] else 2*Self(n-1)+Self(n-4)-2*Self(n-5): n in [1..40]]; // Vincenzo Librandi, Jun 17 2012
  • Maple
    A112030 := proc(n) (2+(-1)^n)*(-1)^floor(n/2) ; end proc:
    A180343 := proc(n) -2/5*A112030(n+1)-(-1)^n/6-7/2+2^n/15 ; end proc: # R. J. Mathar, Jan 18 2011
  • Mathematica
    CoefficientList[Series[(-4+6*x+x^2+2*x^3+9*x^4)/((x-1)*(2*x-1)*(1+x)*(x^2+1)),{x,0,40}],x] (* Vincenzo Librandi, Jun 17 2012 *)
    LinearRecurrence[{2,0,0,1,-2},{-4,-2,-3,-4,-3},40] (* Harvey P. Dale, Sep 06 2020 *)

Formula

G.f.: ( -4 + 6*x + x^2 + 2*x^3 + 9*x^4 ) / ( (x-1)*(2*x-1)*(1+x)*(x^2+1) ). - R. J. Mathar, Jan 18 2011
a(n) = 2*a(n-1) + A131800(n+2).
a(n) = a(n-4) + 2^n.
a(n) = a(n-2) + 4*A007909(n) (A007909(0)=0). From second -3.
a(n) = -2*A112030(n+1)/5 - (-1)^n/6 - 7/2 + 2^n/15. - R. J. Mathar, Jan 18 2011
a(n) = 2*a(n-1) + a(n-4) - 2*a(n-5). - Vincenzo Librandi, Jun 17 2012

A178131 Decimal expansion of (11+3*sqrt(21))/17.

Original entry on oeis.org

1, 4, 5, 5, 7, 4, 8, 6, 5, 2, 0, 5, 1, 0, 3, 0, 5, 8, 9, 3, 9, 7, 8, 9, 0, 6, 8, 1, 2, 4, 6, 1, 1, 9, 1, 4, 5, 1, 1, 4, 9, 0, 4, 1, 0, 1, 7, 8, 2, 5, 8, 3, 2, 7, 6, 9, 3, 0, 6, 8, 9, 7, 8, 6, 5, 7, 1, 8, 0, 0, 3, 1, 0, 3, 9, 0, 7, 8, 3, 0, 9, 7, 6, 3, 6, 0, 6, 3, 8, 0, 4, 6, 1, 6, 4, 9, 0, 2, 9, 9, 8, 8, 4, 2, 8
Offset: 1

Views

Author

Klaus Brockhaus, May 20 2010

Keywords

Comments

Continued fraction expansion of (11+3*sqrt(21))/17 is A131800.

Examples

			(11+3*sqrt(21))/17 = 1.45574865205103058939...
		

Crossrefs

Cf. A010477 (decimal expansion of sqrt(21)), A131800 (repeat 1, 2, 5, 6).
Showing 1-5 of 5 results.