A131865 Partial sums of powers of 16.
1, 17, 273, 4369, 69905, 1118481, 17895697, 286331153, 4581298449, 73300775185, 1172812402961, 18764998447377, 300239975158033, 4803839602528529, 76861433640456465, 1229782938247303441, 19676527011956855057, 314824432191309680913, 5037190915060954894609
Offset: 0
Examples
a(3) = 1 + 16 + 256 + 4096 = 4369 = in binary: 1000100010001. a(4) = (16^5 - 1)/15 = (4^5 + 1) * (4^5 - 1)/15 = 1025 * 1023/15 = 205 * 341 = 69905 = 11111_16. - _Bernard Schott_, Jun 06 2017
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..800
- A. Abdurrahman, CM Method and Expansion of Numbers, arXiv:1909.10889 [math.NT], 2019.
- Kival Ngaokrajang, Illustration of initial terms
- Quynh Nguyen, Jean Pedersen, and Hien T. Vu, New Integer Sequences Arising From 3-Period Folding Numbers, Vol. 19 (2016), Article 16.3.1. See Table 1.
- Simon Plouffe, Identities and approximations inspired from Ramanujan notebooks, III, 2009.
- Index entries related to partial sums.
- Index entries related to q-numbers.
- Index entries for linear recurrences with constant coefficients, signature (17,-16).
Crossrefs
Programs
-
Magma
[(16^(n+1)-1)/15: n in [0..20]]; // Vincenzo Librandi, Sep 17 2011
-
Maple
A131865:=n->(16^(n+1)-1)/15: seq(A131865(n), n=0..30); # Wesley Ivan Hurt, Apr 29 2017
-
Mathematica
Table[(2^(4 n) - 1)/15, {n, 16}] (* Robert G. Wilson v, Aug 22 2007 *) Accumulate[16^Range[0,20]] (* or *) LinearRecurrence[{17,-16},{1,17},20] (* Harvey P. Dale, Jul 19 2019 *)
-
Maxima
a[0]:0$ a[n]:=16*a[n-1]+1$ A131865(n):=a[n]$ makelist(A131865(n),n,1,30); /* Martin Ettl, Nov 05 2012 */
-
PARI
A131865(n)=16^n\15 \\ M. F. Hasler, Nov 05 2012
-
Python
def A131865(n): return (1<<(n+1<<2))//15 # Chai Wah Wu, Nov 10 2022
-
Sage
[gaussian_binomial(n,1,16) for n in range(1,18)] # Zerinvary Lajos, May 28 2009
Formula
a(n) = if n=0 then 1 else a(n-1) + A001025(n).
a(n) = A098704(n+2)/2.
a(n) = (16^(n+1) - 1)/15. - Bernard Schott, Jun 06 2017
a(n) = (A001025(n+1) - 1)/15.
a(n) = 16*a(n-1) + 1. - Paul Curtz, May 20 2008
G.f.: 1 / ( (16*x-1)*(x-1) ). - R. J. Mathar, Feb 06 2011
E.g.f.: exp(x)*(16*exp(15*x) - 1)/15. - Stefano Spezia, Mar 06 2020
Comments