cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A023426 a(n) = a(n-1) + Sum_{k=0..n-4} a(k)*a(n-4-k), a(0) = 1. Generalized Catalan Numbers.

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 7, 11, 18, 32, 59, 107, 191, 343, 627, 1159, 2146, 3972, 7373, 13757, 25781, 48437, 91165, 171945, 325096, 616066, 1169667, 2224355, 4236728, 8082374, 15441719, 29542411, 56590472, 108532322, 208387711, 400551615, 770710831, 1484383399
Offset: 0

Views

Author

Keywords

Comments

Number of lattice paths from (0,0) to (n,0) that stay weakly in the first quadrant and such that each step is either U=(2,1),D=(2,-1), or H=(1,0). E.g. a(5)=4 because we have HHHHH, HUD, UDH and UHD. - Emeric Deutsch, Dec 23 2003
Hankel transform is A132380(n+3). - Paul Barry, May 22 2009

Crossrefs

Programs

  • Maple
    a := n -> hypergeom([(1 - n)/4, (2 - n)/4, (3 - n)/4, -n/4], [2, (1 - n)/2, -n/2], 2^6): seq(simplify(a(n)), n = 0..35); # Peter Luschny, Jul 12 2024
  • Mathematica
    Clear[ a ]; a[ 0 ]=1; a[ n_Integer ] := a[ n ]=a[ n-1 ]+Sum[ a[ k ]*a[ n-4-k ], {k, 0, n-4} ];
    CoefficientList[Series[(1-x-Sqrt[(1-x)^2-4*x^4])/(2*x^4), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 01 2014 *)

Formula

G.f.: [1-z-sqrt((1-z)^2-4z^4)]/[2z^4]. - Emeric Deutsch, Dec 23 2003
From Paul Barry, May 22 2009: (Start)
G.f.: 1/(1-x-x^4/(1-x-x^4/(1-x-x^4/(1-x-x^4/(1-... (continued fraction).
G.f.: (1/(1-x))c(x^4/(1-x)^2), c(x) the g.f. of A000108.
a(n) = Sum_{k=0..floor(n/4)} C(n-2k,2k)*A000108(k). (End)
D-finite with recurrence (n+4)*a(n) +(n+4)*a(n-1) -(5*n+8)*a(n-2) +3*n*a(n-3) +4*(2-n)*a(n-4) +12*(3-n)*a(n-5)=0. - R. J. Mathar, Sep 29 2012
a(n) ~ sqrt(3) * 2^(n+3/2) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 01 2014
G.f. A(x) satisfies: A(x) = (1 + x^4 * A(x)^2) / (1 - x). - Ilya Gutkovskiy, Jul 20 2021
a(n) = hypergeom([(1 - n)/4, (2 - n)/4, (3 - n)/4, -n/4], [2, (1 - n)/2, -n/2], 64). - Peter Luschny, Jul 12 2024

Extensions

Name extended by a formula from the author in Mathematica by Peter Luschny, Jul 13 2024

A107851 Expansion of g.f. x*(-1-x-3*x^2-x^3+2*x^5)/((2*x^3+x^2-1)*(x^4+1)).

Original entry on oeis.org

0, 1, 1, 4, 4, 5, 9, 10, 18, 29, 41, 68, 100, 149, 233, 346, 530, 813, 1225, 1876, 2852, 4325, 6601, 10026, 15250, 23229, 35305, 53732, 81764, 124341, 189225, 287866, 437906, 666317, 1013641, 1542132, 2346276, 3569413, 5430537, 8261962, 12569362
Offset: 0

Views

Author

Creighton Dement, May 25 2005

Keywords

Comments

Floretion Algebra Multiplication Program, FAMP Code: 1jesforzapseq[(.5i' + .5j' + .5'ki' + .5'kj')*(.5'i + .5'j + .5'ik' + .5'jk')], 1vesforzap = A000004

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x(-1-x-3x^2-x^3+2x^5)/((2x^3+x^2-1)(x^4+1)), {x,0,50}],x] (* or *) LinearRecurrence[{0,1,2,-1,0,1,2},{0,1,1,4,4,5,9},51] (* Harvey P. Dale, Jul 19 2011 *)
  • PARI
    a(n)=([0,1,0,0,0,0,0; 0,0,1,0,0,0,0; 0,0,0,1,0,0,0; 0,0,0,0,1,0,0; 0,0,0,0,0,1,0; 0,0,0,0,0,0,1; 2,1,0,-1,2,1,0]^n*[0;1;1;4;4;5;9])[1,1] \\ Charles R Greathouse IV, Oct 03 2016

Formula

a(n) = A159284(n+1) + A132380(n+7).
a(0)=0, a(1)=1, a(2)=1, a(3)=4, a(4)=4, a(5)=5, a(6)=9, a(n)= a(n-2)+ 2*a(n-3)-a(n-4)+a(n-6)+2*a(n-7). - Harvey P. Dale, Jul 19 2011

A109247 Expansion of (1 - 3*x^2 - 3*x^3 + x^4)/(1 + x^4).

Original entry on oeis.org

1, 0, -3, -3, 0, 0, 3, 3, 0, 0, -3, -3, 0, 0, 3, 3, 0, 0, -3, -3, 0, 0, 3, 3, 0, 0, -3, -3, 0, 0, 3, 3, 0, 0, -3, -3, 0, 0, 3, 3, 0, 0, -3, -3, 0, 0, 3, 3, 0, 0, -3, -3, 0, 0, 3, 3, 0, 0, -3, -3, 0, 0, 3, 3, 0, 0, -3, -3, 0, 0, 3, 3, 0, 0, -3, -3, 0, 0, 3, 3, 0, 0, -3, -3
Offset: 0

Views

Author

Paul Barry, Jun 23 2005

Keywords

Comments

Row sums of Riordan array (1-x-2x^2,x(1-x)), A109246.
After the initial terms, cyclic with period 8: [0,0,-3,-3,0,0,3,3]. - Antti Karttunen, Aug 12 2017

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-3x^2-3x^3+x^4)/(1+x^4),{x,0,90}],x] (* or *) Join[{1},LinearRecurrence[{0,0,0,-1},{0,-3,-3,0},90]] (* Harvey P. Dale, Mar 24 2012 *)
  • PARI
    Vec((1-3*x^2-3*x^3+x^4)/(1+x^4) + O(x^80)) \\ Jinyuan Wang, Mar 22 2020
  • Scheme
    (define (A109247 n) (case n ((0) 1) ((1 4) 0) ((2 3) -3) (else (- (A109247 (- n 4)))))) ;; (After Harvey P. Dale's Mar 24 2012 recurrence) - Antti Karttunen, Aug 12 2017
    

Formula

a(0)=1, a(1)=0, a(2)=-3, a(3)=-3, a(4)=0, a(n)=-a(n-4) - Harvey P. Dale, Mar 24 2012
For n > 0, a(n) = -3 * A132380(n). - Antti Karttunen, Aug 12 2017

A144700 Generalized (3,-1) Catalan numbers.

Original entry on oeis.org

1, 1, 1, 1, 2, 5, 11, 21, 38, 71, 141, 289, 591, 1195, 2410, 4897, 10051, 20763, 42996, 89139, 185170, 385809, 806349, 1689573, 3547152, 7459715, 15714655, 33161821, 70095642, 148388521, 314562189, 667682057, 1418942341
Offset: 0

Views

Author

Paul Barry, Sep 19 2008

Keywords

Comments

Number of lattice paths in the first quadrant from (0,0) to (n,0) using only steps H=(1,0), U=(1,1) and D=(3,-1). Hankel transform has g.f. (1-x^3)/(1+x^4) (A132380 (n+3)).

Crossrefs

Programs

  • Magma
    [(&+[Binomial(n-k,3*k)*Catalan(k): k in [0..Floor(n/4)]]): n in [0..40]]; // G. C. Greubel, Jun 15 2022
    
  • Mathematica
    b[n_, m_]:=a[n, m]=Sum[Binomial[n-k,m*k]*CatalanNumber[k], {k,0,Floor[n/(m+1)]}];
    A144700[n_]:= b[n,3]; (* A014137 (m=0), A090344 (m=1), A023431 (m=2) *)
    Table[A144700[n], {n, 0, 40}] (* G. C. Greubel, Jun 15 2022 *)
  • SageMath
    [sum(binomial(n-k,3*k)*catalan_number(k) for k in (0..(n//4))) for n in (0..40)] # G. C. Greubel, Jun 15 2022

Formula

G.f.: (1/(1-x)) * c(x^4/(1-x)^3), where c(x) is the g.f. of A000108.
a(n) = Sum_{k=0..floor(n/4)} binomial(n-k, 3*k)*A000108(k).
(n+4)*a(n) = 2*(2*n+5)*a(n-1) - 6*(n+1)*a(n-2) + 2*(2*n-1)*a(n-3) +3*(n-2)*a(n-4) - 2*(2*n-7)*a(n-5). - R. J. Mathar, Nov 16 2011
a(n) = b(n, 3), where b(n, m) = Sum_{k=0..floor(n/(m+1))} binomial(n-k, m*k)*A000108(k). - G. C. Greubel, Jun 15 2022

A123634 Upper half of Hankel determinant number wall for A004148.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 0, 0, 1, 4, 0, 0, -1, 1, 8, 4, -2, -1, -1, 1, 17, 7, 3, -3, -1, -1, 1, 37, 25, 6, -6, -4, 0, 0, 1, 82, 121, -38, -4, -16, 0, 0, 1, 1, 185, 461, 160, -104, -64, -16, 4, 1, 1, 1, 423, 2001, 588, -144, -360, -60, -10, 5, 1, 1, 1, 978, 9225, 360, 1836, -2160, -450, -50, 15, 6, 0, 0, 1
Offset: 0

Views

Author

Michael Somos, Oct 04 2006

Keywords

Examples

			Table is:
n\k  0   1   2   3   4   5   6
--  --  --  --  --  --  --  --
0 |  1
1 |  1   1
2 |  1   1   1
3 |  1   2   0   0
4 |  1   4   0   0  -1
5 |  1   8   4  -2  -1  -1
6 |  1  17   7   3  -3  -1  -1
		

Crossrefs

Programs

  • PARI
    {T(n, k) = my(m); if( k<0 || k>n, 0, matdet( matrix(k, k, i, j, polcoeff( (1 - x + x^2 - sqrt(1 - 2*x - x^2 + x^3*(-2 + x + O(x^(m=i+j+n-k-1))))) / (2*x^2), m))))};

Formula

T(n, 0) = 1. T(n, 1) = a(n) if n>0, T(n, 2) = a(n+1)*a(n-1) - a(n)^2 if n>1, T(n, 3) = det([a(n-2), a(n-1), a(n); a(n-1), a(n), a(n+1); a(n), a(n+1), a(n+2)]) if n>2 where a(n) = A004148(n).
T(n, n) = A046978(n+1). T(n+1, n) = A132380(n+2). - Michael Somos, Dec 31 2016
Showing 1-5 of 5 results.