A287686 Numbers that are sums of three consecutive primes (A034961) and also sums of squares of three consecutive primes (A133529).
83, 366819, 1055019, 1947411, 2740107, 3694179, 6627579, 8851251, 9430899, 20243811, 28391619, 37545291, 38242083, 49459179, 56550291, 88205211, 101931891, 103429491, 108060339, 135085851, 176962659, 183973851, 194907051, 196911171, 212874531, 249687699, 271986651
Offset: 1
Keywords
Examples
83=A034961(9)=A133529(2), 366819=A034961(11502)=A133529(69), 1055019=A034961(30105)=A133529(107), 1947411=A034961(52758)=A133529(139), 2740107=A034961(72260)=A133529(161), 3694179=A034961(95152)=A133529(185).
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Python
from _future_ import division from sympy import prevprime, nextprime, isprime A287686_list, p2, q2, r2, r = [], 4, 9, 25, 5 while r < 10**6: n = p2+q2+r2 m = n//3 pm, nm = prevprime(m), nextprime(m) k = n - pm - nm if isprime(m): if m == k: A287686_list.append(n) else: if nextprime(nm) == k or prevprime(pm) == k: A287686_list.append(n) s = nextprime(r) p2, q2, r2, r = q2, r2, s**2, s # Chai Wah Wu, May 30 2017
Comments