cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A133529 Sum of squares of three consecutive primes.

Original entry on oeis.org

38, 83, 195, 339, 579, 819, 1179, 1731, 2331, 3171, 4011, 4899, 5739, 6867, 8499, 10011, 11691, 13251, 14859, 16611, 18459, 21051, 24219, 27531, 30219, 32259, 33939, 36099, 40779, 46059, 52059, 55251, 60291, 64323, 69651, 74019, 79107, 84387, 89859, 94731, 101283
Offset: 1

Views

Author

Artur Jasinski, Sep 14 2007

Keywords

Comments

It is easy to see that all terms > 83 are divisible by 3.
Likewise all terms except 38 are congruent to 3 (mod 8). - Franklin T. Adams-Watters, Jun 17 2015

Examples

			a(1)=38 because 2^2 + 3^2 + 5^2 = 38.
		

Crossrefs

Programs

  • Magma
    [&+[ NthPrime(n+i)^2 :  i in [0..2]] : n in [1..20]]; // K. D. Bajpai, Jun 17 2015
  • Mathematica
    a = 2; Table[Prime[n]^a + Prime[n + 1]^a + Prime[n + 2]^a, {n, 1, 100}]
    Total/@Partition[Prime[Range[50]]^2, 3, 1] (* Vincenzo Librandi, Jun 18 2015 *)
  • PARI
    for( n= 1, 100,  k= sum(i=n, n+2, prime(i)^2) ; print1(k, ", ")) \\ K. D. Bajpai, Jun 17 2015
    

Formula

a(n) = A069484(n) + A001248(n+2). - Michel Marcus, Nov 08 2013

Extensions

a(38)-a(41) from K. D. Bajpai, Jun 18 2015

A133525 Sum of third powers of four consecutive primes.

Original entry on oeis.org

503, 1826, 3996, 8784, 15300, 26136, 48328, 73206, 117000, 173754, 228872, 302904, 401128, 537586, 685060, 882000, 1091034, 1274672, 1540730, 1811754, 2158812, 2682468, 3219730, 3740670, 4260744, 4643100, 5055696, 6011352, 7034400
Offset: 1

Views

Author

Artur Jasinski, Sep 14 2007

Keywords

Examples

			a(1)=503 because 2^3+3^3+5^3+7^3=503.
		

Crossrefs

Programs

  • Maple
    N:= 50: # for a(1)..a(N)
    P3:= [0,seq(ithprime(i)^3,i=1..N+3)]:
    S:= ListTools:-PartialSums(P3):
    seq(S[i+4]-S[i],i=1..N); # Robert Israel, Jan 01 2024
  • Mathematica
    a = 3; Table[Prime[n]^a + Prime[n + 1]^a + Prime[n + 2]^a + Prime[n + 3]^a, {n, 1, 100}]
    Total/@Partition[Prime[Range[40]]^3,4,1] (* Harvey P. Dale, Jan 06 2019 *)

Formula

a(n) = A133530(n) + A030078(n+3). - Michel Marcus, Nov 08 2013

A133531 Sum of fourth powers of three consecutive primes.

Original entry on oeis.org

722, 3107, 17667, 45603, 126723, 242403, 493683, 1117443, 1910643, 3504963, 5623443, 8118723, 11124243, 16188963, 24887523, 33853683, 46114323, 59408643, 73961043, 92760003, 114806643, 149150643, 198729843, 255331923, 305140563
Offset: 1

Views

Author

Artur Jasinski, Sep 14 2007

Keywords

Examples

			a(1)=722 because 2^4+3^4+5^4=722.
		

Crossrefs

Programs

  • Mathematica
    a = 4; Table[Prime[n]^a + Prime[n + 1]^a + Prime[n + 2]^a, {n, 1, 100}]

Formula

a(n) = A133535(n) + A030514(n+2). - Michel Marcus, Nov 09 2013

A133532 Sum of fifth powers of three consecutive primes.

Original entry on oeis.org

3400, 20175, 180983, 549151, 1952201, 4267249, 10332299, 29423591, 55576643, 118484257, 213829309, 332208601, 492209651, 794548943, 1362464799, 1977716093, 2909645707, 3998950759, 5227426051, 6954357343, 9089168635
Offset: 1

Views

Author

Artur Jasinski, Sep 14 2007

Keywords

Examples

			a(1)=3400 because 2^5+3^5+5^5=3400.
		

Crossrefs

Programs

  • Mathematica
    a = 5; Table[Prime[n]^a + Prime[n + 1]^a + Prime[n + 2]^a, {n, 1, 100}]
    Total[#^5]&/@Partition[Prime[Range[30]],3,1] (* Harvey P. Dale, May 26 2011 *)

Formula

a(n) = A133536(n) + A050997(n+2). - Michel Marcus, Nov 09 2013

A133538 Sum of seventh powers of two consecutive primes.

Original entry on oeis.org

2315, 80312, 901668, 20310714, 82235688, 473087190, 1304210412, 4298697186, 20654701756, 44762490420, 122444491244, 289686151014, 466572884988, 778441731570, 1681334260300, 3663362624656, 5631394320840, 9203454441344, 15155831763714, 20142518677488
Offset: 1

Views

Author

Artur Jasinski, Sep 14 2007

Keywords

Examples

			a(1)=2315 because 2^7 + 3^7 = 2315.
		

Crossrefs

Programs

  • Magma
    [NthPrime(n)^7 + NthPrime(n+1)^7: n in [1..25]]; // Vincenzo Librandi, Aug 23 2018
  • Maple
    seq(add(ithprime(n+k)^7,k=0..1),n=1..20); # Muniru A Asiru, Aug 22 2018
  • Mathematica
    e = 7; Table[Prime[n]^e + Prime[n + 1]^e, {n, 1, 100}]
    Total/@Partition[Prime[Range[20]]^7,2,1] (* Harvey P. Dale, Oct 16 2014 *)
  • PARI
    a(n) = prime(n)^7 + prime(n+1)^7; \\ Michel Marcus, Aug 22 2018
    

Formula

a(n) = A092759(n) + A092759(n+1). - Michel Marcus, Nov 09 2013

A133534 Sum of third powers of two consecutive primes.

Original entry on oeis.org

35, 152, 468, 1674, 3528, 7110, 11772, 19026, 36556, 54180, 80444, 119574, 148428, 183330, 252700, 354256, 432360, 527744, 658674, 746928, 882056, 1064826, 1276756, 1617642, 1942974, 2123028, 2317770, 2520072, 2737926, 3491280
Offset: 1

Views

Author

Artur Jasinski, Sep 14 2007

Keywords

Examples

			a(1)=35 because 2^3+3^3=35.
		

Crossrefs

Programs

  • Mathematica
    a = 3; Table[Prime[n]^a + Prime[n + 1]^a, {n, 1, 100}]
    Total[#^3]&/@Partition[Prime[Range[50]],2,1] (* Harvey P. Dale, Jan 29 2021 *)

Formula

a(n) = A030078(n) + A030078(n+1). - Michel Marcus, Nov 09 2013

A133535 Sum of fourth powers of two consecutive primes.

Original entry on oeis.org

97, 706, 3026, 17042, 43202, 112082, 213842, 410162, 987122, 1630802, 2797682, 4699922, 6244562, 8298482, 12770162, 20007842, 25963202, 33996962, 45562802, 53809922, 67348322, 86408402, 110200562, 151271522, 192589682, 216611282
Offset: 1

Views

Author

Artur Jasinski, Sep 14 2007

Keywords

Examples

			a(1)=2^4+3^4=97.
		

Crossrefs

Programs

  • Mathematica
    a = 4; Table[Prime[n]^a + Prime[n + 1]^a, {n, 1, 100}]

Formula

a(n) = A030514(n) + A030514(n+1). - Michel Marcus, Nov 09 2013

A133536 Sum of fifth powers of two consecutive primes.

Original entry on oeis.org

275, 3368, 19932, 177858, 532344, 1791150, 3895956, 8912442, 26947492, 49140300, 97973108, 185200158, 262864644, 376353450, 647540500, 1133119792, 1559520600, 2194721408, 3154354458, 3877300944, 5150127992, 7016097042, 9523100092
Offset: 1

Views

Author

Artur Jasinski, Sep 14 2007

Keywords

Examples

			a(1)=2^5+3^5=275.
		

Crossrefs

Programs

  • Mathematica
    a = 5; Table[Prime[n]^a + Prime[n + 1]^a, {n, 1, 100}]

Formula

a(n) = A050997(n) + A050997(n+1). - Michel Marcus, Nov 09 2013

A133537 Sum of sixth powers of two consecutive primes.

Original entry on oeis.org

793, 16354, 133274, 1889210, 6598370, 28964378, 71183450, 195081770, 742859210, 1482327002, 3453230090, 7315830650, 11071467290, 17100578378, 32943576458, 64344894770, 93700908002, 141978756530, 218558666090, 279434510210
Offset: 1

Views

Author

Artur Jasinski, Sep 14 2007

Keywords

Examples

			a(1)=793 because 2^6+3^6=793.
		

Crossrefs

Programs

  • Mathematica
    a = 6; Table[Prime[n]^a + Prime[n + 1]^a, {n, 1, 100}]

Formula

a(n) = A030516(n) + A030516(n+1). - Michel Marcus, Nov 09 2013

A133533 Sum of sixth powers of three consecutive primes.

Original entry on oeis.org

16418, 134003, 1904835, 6716019, 30735939, 76010259, 219219339, 789905091, 1630362891, 4048053411, 8203334331, 13637193699, 21850682619, 39264939507, 75124110099, 115865269131, 184159290171, 270079040451, 369892892379
Offset: 1

Views

Author

Artur Jasinski, Sep 14 2007

Keywords

Examples

			a(1)=16418 because 2^6+3^6+5^6=16418.
		

Crossrefs

Programs

  • Maple
    L:= [seq(ithprime(i)^6,i=1..100)]:
    L[1..-3]+L[2..-2]+L[3..-1]; # Robert Israel, Jun 28 2018
  • Mathematica
    a = 6; Table[Prime[n]^a + Prime[n + 1]^a + Prime[n + 2]^a, {n, 1, 100}]
    Total/@(Partition[Prime[Range[25]],3,1]^6)  (* Harvey P. Dale, Mar 29 2011 *)

Formula

a(n) = A133537(n) + A030516(n+2). - Michel Marcus, Nov 09 2013
Showing 1-10 of 20 results. Next