A134375
a(n) = (n!)^4.
Original entry on oeis.org
1, 1, 16, 1296, 331776, 207360000, 268738560000, 645241282560000, 2642908293365760000, 17340121312772751360000, 173401213127727513600000000, 2538767161403058526617600000000, 52643875858853821607942553600000000, 1503561738404723998944447273369600000000
Offset: 0
Cf.
A000142,
A001044,
A000442,
A036740,
A010050,
A009445,
A134366,
A134367,
A134368,
A134369,
A134371,
A134372,
A134373,
A134374.
-
a:= n-> (n!)^4:
seq(a(n), n=0..20); # Alois P. Heinz, Aug 15 2013
-
Table[((n)!)^(4), {n, 0, 10}]
A134374
a(n) = ((2n+1)!)^2.
Original entry on oeis.org
1, 36, 14400, 25401600, 131681894400, 1593350922240000, 38775788043632640000, 1710012252724199424000000, 126513546505547170185216000000, 14797530453474819213543604224000000
Offset: 0
Cf.
A000142,
A001044,
A000442,
A036740,
A010050,
A009445,
A134366,
A134367,
A134368,
A134369,
A134371,
A134372,
A134373,
A134375,
A334378.
A134368
a(n) = ((2n)!)^(n+1).
Original entry on oeis.org
1, 4, 13824, 268738560000, 106562062388507443200000, 2283380023591730815784976384000000000000, 5785737804304645733190746102656048717392091545600000000000000
Offset: 0
Cf.
A000142,
A001044,
A000442,
A036740,
A134367,
A134368,
A134369,
A134370,
A134371,
A134374,
A134375.
A134366
a(n) = (n!)^(n-1).
Original entry on oeis.org
1, 1, 2, 36, 13824, 207360000, 193491763200000, 16390160963076096000000, 173238200573946282828103680000000, 300679807141675805997423113304381849600000000
Offset: 0
-
a:=n->mul(n!/k, k=1..n): seq(a(n), n=0..9); # Zerinvary Lajos, Jan 22 2008
restart:with (combinat):a:=n->mul(stirling1(n,1), j=3..n): seq(a(n), n=1..10); # Zerinvary Lajos, Jan 01 2009
-
Table[(n!)^(n - 1), {n, 0, 10}]
-
a(n) = (n!)^(n-1); \\ Michel Marcus, Dec 23 2015
A134369
a(n) = ((2n+1)!)^(n+1).
Original entry on oeis.org
1, 36, 1728000, 645241282560000, 6292383221978976013516800000, 4045146997974190235742848547815424000000000000, 363046466970952735968096996065196818096105852014637875200000000000000
Offset: 0
Cf.
A000142,
A001044,
A000442,
A036740,
A134366,
A134367,
A134368,
A134370,
A134371,
A134374,
A134375.
A134371
a(n) = ((2n)!)^n.
Original entry on oeis.org
1, 2, 576, 373248000, 2642908293365760000, 629238322197897601351680000000000, 12078744213598964456884373878200091017216000000000000
Offset: 0
Cf.
A000142,
A001044,
A000442,
A036740,
A134366,
A134367,
A134368,
A134369,
A134370,
A134374,
A134375.
A134372
a(n) = ((2n)!)^2.
Original entry on oeis.org
1, 4, 576, 518400, 1625702400, 13168189440000, 229442532802560000, 7600054456551997440000, 437763136697395052544000000, 40990389067797283140009984000000, 5919012181389927685417441689600000000
Offset: 0
Cf.
A000142,
A001044,
A000442,
A036740,
A010050,
A134366,
A134367,
A134368,
A134369,
A134371,
A134374,
A134375,
A334379,
A334632.
A134370
a(n) = ((2n+1)!)^(n+2).
Original entry on oeis.org
1, 216, 207360000, 3252016064102400000, 2283380023591730815784976384000000, 161469323688736156802100136913438716723200000000000000, 2260697901194635682690248130915498742378267539496871953338204160000000000000000
Offset: 0
Cf.
A000142,
A001044,
A000442,
A036740,
A134366,
A134367,
A134368,
A134369,
A134371,
A134374,
A134375.
A134373
a(n) = ((2n)!)^3.
Original entry on oeis.org
1, 8, 13824, 373248000, 65548320768000, 47784725839872000000, 109903340320478724096000000, 662559760549147780765974528000000, 9159226129831418921308831875072000000000, 262435789155225791087396177124997988352000000000
Offset: 0
Cf.
A000142,
A001044,
A000442,
A036740,
A010050,
A134366,
A134367,
A134368,
A134369,
A134371,
A134373,
A134374,
A134375.
-
Table[((2n)!)^(3), {n, 0, 10}]
((2*Range[0, 10])!)^3 (* Harvey P. Dale, Jul 25 2016 *)
-
[factorial(2*n)**3 for n in range(0,9)] # Stefano Spezia, Apr 22 2025
A198481
Square root of the largest square dividing ((2n-1)!)^(2n-3).
Original entry on oeis.org
1, 1, 240, 304819200, 3440500260470784000, 1827912356210202139164672000000000, 13482302715547740229948201750717130814259200000000000
Offset: 1
-
A000188 := proc(n)
a := 1 ;
for pf in ifactors(n)[2] do
p := op(1,pf) ;
e := op(2,pf) ;
a := a*p^(floor(e/2)) ;
end do:
a ;
end proc:
A198481 := proc(n)
A000188( A134367(2*n-1)) ;
end proc:
seq(A198481(n),n=1..10) ; # R. J. Mathar, Oct 25 2011
-
aa = {}; data = Table[kk = Sqrt[(n!)^(n - 2)], {n, 1, 100, 2}]; sp = data /. Sqrt[_] -> 1; sfp = data/sp; sp
Sqrt[#]&/@Table[Max[Select[Divisors[((2n-1)!)^(2n-3)],IntegerQ[Sqrt[#]]&]],{n,7}] (* Harvey P. Dale, May 24 2024 *)
Showing 1-10 of 12 results.
Comments