cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A135035 Binomial transform of abs(A134967).

Original entry on oeis.org

1, 3, 6, 12, 26, 60, 140, 320, 712, 1552, 3344, 7168, 15328, 32704, 69568, 147456, 311424, 655616, 1376512, 2883584, 6028800, 12581888, 26213376, 54525952, 113248256, 234885120, 486543360, 1006632960, 2080366592
Offset: 0

Views

Author

Paul Curtz, Feb 29 2008

Keywords

Formula

O.g.f.: -(x-1)(2x^3-2x+1)/[(2x^2-2x+1)(2x-1)^2]. - R. J. Mathar, Apr 02 2008

Extensions

More terms from R. J. Mathar, Apr 02 2008

A214297 a(0)=-1, a(1)=0, a(2)=-3; thereafter a(n+2) - 2*a(n+1) + a(n) has period 4: repeat -4, 8, -4, 2.

Original entry on oeis.org

-1, 0, -3, 2, 3, 6, 5, 12, 15, 20, 21, 30, 35, 42, 45, 56, 63, 72, 77, 90, 99, 110, 117, 132, 143, 156, 165, 182, 195, 210, 221, 240, 255, 272, 285, 306, 323, 342, 357, 380, 399, 420, 437, 462, 483, 506, 525, 552, 575, 600, 621, 650, 675, 702, 725, 756, 783, 812, 837, 870, 899, 930, 957, 992, 1023, 1056, 1085, 1122, 1155, 1190
Offset: 0

Views

Author

Paul Curtz, Jul 11 2012

Keywords

Comments

Let a(n)/A000290(n) = [-1/0, 0/1, -3/4, 2/9, 3/16, 6/25, 5/36, 12/49, 15/64, 20/81, 21/100, 30/121, ...] = a(n)/b(n) (say).
Then b(n)-4*a(n)=4, 1, 16, 1 (period of length 4).
Permutation from a(n) to A061037(n): 1, 3, 2, 7, 5, 11, 4, 15, 9, 19, 6, ... = shifted A145979 + 1.
A061037(n) - a(n) = 0, 3, -3, -3, 0, -15, 3, -33, 0 -57, 15, -87, 0, -123, ...
First 3 rows:
-1 0 -3 2 3 6 5 12 15 20 21 30 35
1 -3 5 1 3 -1 7 3 5 1 9 5 7
-4 8 -4 2 -4 8 -4 2 -4 8 -4 2 -4.
Note that the terms of a(n) increase from 12. Compare to increasing terms permutation of A061037(n): -3,-1,0,2,3,5,6,12,15, .... and A129647.
c(n) = 0, -1, 0, -1, 2, 1, 2, 1, 4, 3, 4, 3, 6, 5, 6, 5, ... (cf. A134967)
d(n) = -1, 1, 1, 3, 1, 3, 3, 5, 3, 5, 5, 7, 5, 7, 7, 9, ..., hence:
a(n) = c(n+1) * d(n+1).

Programs

  • Magma
    [(2*n^2-11-9*(-1)^n+6*((-1)^((2*n+1-(-1)^n)/4)+(-1)^((2*n-1+(-1)^n)/4)))/8: n in [0..100]]; // G. C. Greubel, Sep 19 2018
  • Maple
    A214297 := proc(n)
        option remember;
        if n <=5 then
            op(n+1,[-1,0,-3,2,3,6]) ;
        else
            2*procname(n-1)-procname(n-2)+procname(n-4)-2*procname(n-5)+procname(n-6) ;
        end if;
    end proc: # R. J. Mathar, Jun 28 2013
  • Mathematica
    Table[(2 n^2 - 11 - 9 (-1)^n + 6 ((-1)^((2 n + 1 - (-1)^n)/4) + (-1)^((2 n - 1 + (-1)^n)/4)))/8, {n, 0, 69}] (* or *)
    CoefficientList[Series[-(1 - 2 x + 4 x^2 - 8 x^3 + 3 x^4)/((1 - x)^2*(1 - x^4)), {x, 0, 69}], x] (* Michael De Vlieger, Mar 24 2017 *)
  • PARI
    vector(100, n, n--; (2*n^2-11-9*(-1)^n+6*((-1)^((2*n+1-(-1)^n)/4)+(-1)^((2*n-1+(-1)^n)/4)))/8) \\ G. C. Greubel, Sep 19 2018
    

Formula

a(k+4) - a(k) = 2*k + 4.
a(k+2) - a(k-2) = 2*k.
a(k+6) - a(k-6) = 6*k.
a(k+10) - a(k-10) = 10*k.
a(n) = 3*a(n-4) - 3*a(n-8) + a(n-12).
a(2*k) = -1, -3, followed by 3, 5, 15, 21, 35, 45, ... (A142717);
a(2*k+1) = k*(k+1) (see A002378).
A198442(n) = -1,0,0,2,3,6,8,12, minus 3 at A198442(4*n+2).
G.f. -( 1-2*x+4*x^2-8*x^3+3*x^4 )/( (1-x)^2*(1-x^4) ). - R. J. Mathar, Jul 17 2012; edited by N. J. A. Sloane, Jul 22 2012
From R. J. Mathar, Jun 28 2013: (Start)
a(4*k) = A000466(k);
a(4*k+1) = A002943(k);
a(4*k+2) = A078371(k-1) for k>0;
a(4*k+3) = A002939(k+1). (End)
a(n) = (2*n^2-11-9*(-1)^n+6*((-1)^((2*n+1-(-1)^n)/4)+(-1)^((2*n-1+(-1)^n)/4)))/8. - Luce ETIENNE, Oct 27 2016

Extensions

Edited by N. J. A. Sloane, Jul 22 2012

A162330 Blocks of 4 numbers of the form 2k, 2k-1, 2k, 2k+1, k=1,2,3,4,...

Original entry on oeis.org

2, 1, 2, 3, 4, 3, 4, 5, 6, 5, 6, 7, 8, 7, 8, 9, 10, 9, 10, 11, 12, 11, 12, 13, 14, 13, 14, 15, 16, 15, 16, 17, 18, 17, 18, 19, 20, 19, 20, 21, 22, 21, 22, 23, 24, 23, 24, 25, 26, 25, 26, 27, 28, 27, 28, 29, 30, 29, 30, 31, 32, 31, 32, 33, 34, 33, 34, 35, 36, 35, 36, 37, 38, 37
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jul 01 2009

Keywords

Comments

This illustrates the infinite product Pi/2 = Product_{k>=1} ((2*k)/(2k-1))*((2k)/(2k+1)): read the 4 terms of numerator and denominator of the factor in the product in that order shown.
Number of roots of the polynomial 1+x+x^2+...+x^(n+1) = (x^(n+2)-1)/(x-1) in the left half plane. - Michel Lagneau, Oct 30 2012

Crossrefs

Programs

Formula

a(n) = a(n-1) + a(n-4) - a(n-5).
G.f.: x*(2-x+x^2+x^3-x^4)/((1+x)*(1+x^2)*(1-x)^2).
a(n) = n + 1 - 2*floor( (n+2)/4 ). - M. F. Hasler, Nov 01 2012
a(n) = (2*n + 3 - (-1)^n + 2*(-1)^((2*n - 1 + (-1)^n)/4))/4. - Luce ETIENNE, Mar 08 2016
Sum_{n>=1} (-1)^n/a(n) = 2*log(2) - 1. - Amiram Eldar, Sep 10 2023

Extensions

Edited by R. J. Mathar, Sep 16 2009

A226279 a(4n) = a(4n+2) = 2*n , a(4n+1) = a(4n+3) = 2*n-1.

Original entry on oeis.org

0, -1, 0, -1, 2, 1, 2, 1, 4, 3, 4, 3, 6, 5, 6, 5, 8, 7, 8, 7, 10, 9, 10, 9, 12, 11, 12, 11, 14, 13, 14, 13, 16, 15, 16, 15, 18, 17, 18, 17, 20, 19, 20, 19, 22, 21, 22, 21, 24, 23, 24, 23, 26, 25, 26, 25, 28, 27, 28, 27, 30, 29, 30, 29
Offset: 0

Views

Author

Paul Curtz, Jun 02 2013

Keywords

Comments

a(n)=c(n) in A214297(n).
In A214297 d(n)=-1,1,1,3,1,3,3,... = mix (-A186422(2n) , A186422(2n+1)).
A214297 is the (reduced) numerator of 1/4 - 1/A061038(n).
(i.e. (1/4 -(1/0, 1/4, 1, 1/36, 1/16,...)) = -1/0, 0/1, -3/4, 2/9, 3/16,... )
1/0 is a convention.
n^2=(a(n+1)+d(n+1))^2 are the denominators.

Crossrefs

Programs

Formula

a(0) = a(2)=0, a(1)=a(3)=-1, a(4)=2.
a(n) = a(n-4) + 2, n > 3.
a(n) = a(n-1) + a(n-4) - a(n-5), n > 4.
A214297(n) = a(n+1) * d(n+1).
G.f.: x*(3*x^3-x^2+x-1) / ((x-1)^2*(x+1)*(x^2+1)). - Colin Barker, Sep 22 2013

A293990 a(n) = (3*n + ((n-2) mod 4))/2.

Original entry on oeis.org

1, 3, 3, 5, 7, 9, 9, 11, 13, 15, 15, 17, 19, 21, 21, 23, 25, 27, 27, 29, 31, 33, 33, 35, 37, 39, 39, 41, 43, 45, 45, 47, 49, 51, 51, 53, 55, 57, 57, 59, 61, 63, 63, 65, 67, 69, 69, 71, 73, 75, 75, 77, 79, 81, 81, 83, 85, 87, 87, 89, 91, 93, 93
Offset: 0

Views

Author

Dimitris Valianatos, Oct 21 2017

Keywords

Comments

The product (2/3) * (4/3) * (6/5) * (6/7) * (8/9) * (10/9) * (12/11) * (12/13) * ... = Pi/(2*sqrt(3)). The denominators are a(n) for n >= 1 and numerators are a(n-1) + A093148(n) for n >= 1 -> [2, 4, 6, 6, 8, 10, 12, 12, ...].
Let r(n) = (a(n)-1)/(a(n)+1) if a(n) mod 4 = 1, (a(n)+1)/(a(n)-1) otherwise; then Product_{n>=1} r(n) = (2/1) * (2/1) * (2/3) * (4/3) * (4/5) * (4/5) * (6/5) * (6/7) * ... = Pi*sqrt(3)/2 = 2.72069904635132677...
The odd numbers of partial sums this sequence, are identified with the A003215 sequence. Also the prime numbers that appear in partial sums in this sequence, are identified with the A002407 sequence.

Crossrefs

Programs

  • Magma
    [(3*n+((n-2) mod 4))/2 : n in [0..100]]; // Wesley Ivan Hurt, Oct 29 2017
  • Maple
    A293990:=n->(3*n+((n-2) mod 4))/2: seq(A293990(n), n=0..100); # Wesley Ivan Hurt, Oct 29 2017
  • Mathematica
    Table[(3*n + Mod[(n - 2), 4])/2, {n, 0, 100}] (* Wesley Ivan Hurt, Oct 29 2017 *)
    f[n_] := (3n + Mod[n - 2, 4])/2; Array[f, 65, 0] (* or *)
    LinearRecurrence[{1, 0, 0, 1, -1}, {1, 3, 3, 5, 7}, 65] (* or *)
    CoefficientList[ Series[(x^4 + 2x^3 + 2x + 1)/((x - 1)^2 (x^3 + x^2 + x + 1)), {x, 0, 64}], x] (* Robert G. Wilson v, Nov 28 2017 *)
  • PARI
    a(n) = (3*n + (n-2)%4) / 2
    
  • PARI
    Vec(x*(1 + 2*x + 2*x^3 + x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)) + O(x^30)) \\ Colin Barker, Oct 21 2017
    
  • PARI
    first(n) = my(start=[1,3,3,5,7,9,9,11]); if(n<=8, return(start)); my(res=vector(n)); for (i=1, 8, res[i] = start[i]); for(i = 1, n-8 ,res[i+8] = res[i] + 12); res \\ David A. Corneth, Oct 21 2017
    

Formula

Sum_{n>=0} 1/a(n)^2 = 5*Pi^2/36 = 1.3707783890401886970... = 10*A086729.
(a(n) - n) * (-1)^(n+1) = A134967(n) for n >= 0.
a(n) - n = A162330(n) for n >= 0.
a(n) - n = A285869(n+1) for n >= 0.
a(n) + a(n+1) = A157932(n+2) for n >= 0.
a(n) + (2*n+1) = A047298(n+1) for n >= 0.
From Colin Barker, Oct 21 2017: (Start)
G.f.: x*(1 + 2*x + 2*x^3 + x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)).
a(n) = a(n-1) + a(n-4) - a(n-5) for n > 5.
(End)
a(n + 8) = a(n) + 12. - David A. Corneth, Oct 21 2017
a(4*k+4) * a(4*k+3) - a(4*k+2) * a(4*k+1) = 2*A063305(k+3) for k >= 0.
Sum_{n>=0} 1/(a(n) + a(n+2))^2 = (4*Pi^2 - 27) / 108 = (A214549 - 1) / 4.
Showing 1-5 of 5 results.