cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A285869 a(n) is the number of zeros of the Chebyshev S(n, x) polynomial in the open interval (-sqrt(2), +sqrt(2)).

Original entry on oeis.org

0, 1, 2, 1, 2, 3, 4, 3, 4, 5, 6, 5, 6, 7, 8, 7, 8, 9, 10, 9, 10, 11, 12, 11, 12, 13, 14, 13, 14, 15, 16, 15, 16, 17, 18, 17, 18, 19, 20, 19, 20, 21, 22, 21, 22, 23, 24, 23, 24, 25, 26, 25, 26, 27, 28, 27, 28, 29, 30, 29, 30, 31, 32, 31, 32, 33, 34, 33, 34
Offset: 0

Views

Author

Wolfdieter Lang, May 10 2017

Keywords

Comments

See a May 06 2017 comment on A049310 where these problems are considered which originated in a conjecture by Michel Lagneau (see A008611) on Fibonacci polynomials.

Crossrefs

Programs

  • Mathematica
    Table[2 (Floor[n/2] - Floor[(n + 1)/4]) + Boole[OddQ@ n], {n, 0, 52}] (* Michael De Vlieger, May 10 2017 *)
  • PARI
    concat(0, Vec(x*(1 + x - x^2 + x^3) / ((1 - x)^2*(1 + x)*(1 + x^2)) + O(x^100))) \\ Colin Barker, May 18 2017

Formula

a(n) = 2*b(n) if n is even, else a(n) = 1 + 2*b(n), with b(n) = floor(n/2) - floor((n + 1)/4) = A059169(n+1).
G.f. for {b(n)}: Sum_{n>=0} b(n)*x^n = x^2*(1 - x + x^2)/((1 - x)*(1 - x^4)) (see A059169).
From Colin Barker, May 18 2017: (Start)
G.f.: x*(1 + x - x^2 + x^3) / ((1 - x)^2*(1 + x)*(1 + x^2)).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>4.
(End)
a(n) = A162330(n-1) for n >= 2. - Michel Marcus, Nov 01 2017
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2) (A016627). - Amiram Eldar, Sep 17 2023
a(n) = A183041(n-1) for n>=2. - R. J. Mathar, May 13 2025

A083219 a(n) = n - 2*floor(n/4).

Original entry on oeis.org

0, 1, 2, 3, 2, 3, 4, 5, 4, 5, 6, 7, 6, 7, 8, 9, 8, 9, 10, 11, 10, 11, 12, 13, 12, 13, 14, 15, 14, 15, 16, 17, 16, 17, 18, 19, 18, 19, 20, 21, 20, 21, 22, 23, 22, 23, 24, 25, 24, 25, 26, 27, 26, 27, 28, 29, 28, 29, 30, 31, 30, 31, 32, 33, 32, 33, 34, 35, 34, 35, 36, 37, 36, 37, 38
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 22 2003

Keywords

Comments

Conjecture: number of roots of P(x) = x^n - x^(n-1) - x^(n-2) - ... - x - 1 in the left half-plane. - Michel Lagneau, Apr 09 2013
a(n) is n+2 with its second least significant bit removed (see A021913(n+2) for that bit). - Kevin Ryde, Dec 13 2019

Crossrefs

Cf. A083220, A129756, A162751 (second highest bit removed).
Essentially the same as A018837.

Programs

Formula

a(n) = A083220(n)/2.
a(n) = a(n-1) + n mod 2 + (n mod 4 - 1)*(1 - n mod 2), a(0) = 0.
G.f.: x*(1+x+x^2-x^3)/((1-x)^2*(1+x)*(1+x^2)). - R. J. Mathar, Aug 28 2008
a(n) = n - A129756(n). - Michel Lagneau, Apr 09 2013
Bisection: a(2*k) = 2*floor((n+2)/4), a(2*k+1) = a(2*k) + 1, k >= 0. - Wolfdieter Lang, May 08 2017
a(n) = (2*n + 3 - 2*cos(n*Pi/2) - cos(n*Pi) - 2*sin(n*Pi/2))/4. - Wesley Ivan Hurt, Oct 02 2017
a(n) = A162330(n+2) - 1 = A285869(n+3) - 1. - Kevin Ryde, Dec 13 2019
E.g.f.: ((1 + x)*cosh(x) - cos(x) + (2 + x)*sinh(x) - sin(x))/2. - Stefano Spezia, May 27 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2) - 1. - Amiram Eldar, Aug 21 2023

A183041 Least number of knight's moves from (0,0) to (n,1) on infinite chessboard.

Original entry on oeis.org

3, 2, 1, 2, 3, 4, 3, 4, 5, 6, 5, 6, 7, 8, 7, 8, 9, 10, 9, 10, 11, 12, 11, 12, 13, 14, 13, 14, 15, 16, 15, 16, 17, 18, 17, 18, 19, 20, 19, 20, 21, 22, 21, 22, 23, 24, 23, 24, 25, 26, 25, 26, 27, 28, 27, 28, 29, 30, 29, 30, 31, 32, 31, 32, 33, 34, 33, 34, 35, 36
Offset: 0

Views

Author

Clark Kimberling, Dec 20 2010

Keywords

Comments

Row 2 of the array at A065775.
Apparently a(n)=A162330(n), n>0. - R. J. Mathar, Jan 29 2011

Examples

			a(0)=3 counts (0,0) to (2,1) to (1,3) to (0,1).
		

Crossrefs

Programs

  • Python
    def a(n):
      if n < 2: return [3, 2][n]
      m, r = divmod(n, 4)
      return [2*m+1, 2*m+2][r%2]
    print([a(n) for n in range(70)]) # Michael S. Branicky, Mar 02 2021

Formula

T(0,1)=3, T(1,1)=2, and for m>=1,
T(4m-2,1)=2m-1, T(4m-1,1)=2m, T(4m,1)=2m+1, T(4m+1,1)=2m+2.
G.f.: (2*x^5-2*x^4+x^3-x^2-x+3) / ((x-1)^2*(x+1)*(x^2+1)). - Colin Barker, Feb 19 2014

A226279 a(4n) = a(4n+2) = 2*n , a(4n+1) = a(4n+3) = 2*n-1.

Original entry on oeis.org

0, -1, 0, -1, 2, 1, 2, 1, 4, 3, 4, 3, 6, 5, 6, 5, 8, 7, 8, 7, 10, 9, 10, 9, 12, 11, 12, 11, 14, 13, 14, 13, 16, 15, 16, 15, 18, 17, 18, 17, 20, 19, 20, 19, 22, 21, 22, 21, 24, 23, 24, 23, 26, 25, 26, 25, 28, 27, 28, 27, 30, 29, 30, 29
Offset: 0

Views

Author

Paul Curtz, Jun 02 2013

Keywords

Comments

a(n)=c(n) in A214297(n).
In A214297 d(n)=-1,1,1,3,1,3,3,... = mix (-A186422(2n) , A186422(2n+1)).
A214297 is the (reduced) numerator of 1/4 - 1/A061038(n).
(i.e. (1/4 -(1/0, 1/4, 1, 1/36, 1/16,...)) = -1/0, 0/1, -3/4, 2/9, 3/16,... )
1/0 is a convention.
n^2=(a(n+1)+d(n+1))^2 are the denominators.

Crossrefs

Programs

Formula

a(0) = a(2)=0, a(1)=a(3)=-1, a(4)=2.
a(n) = a(n-4) + 2, n > 3.
a(n) = a(n-1) + a(n-4) - a(n-5), n > 4.
A214297(n) = a(n+1) * d(n+1).
G.f.: x*(3*x^3-x^2+x-1) / ((x-1)^2*(x+1)*(x^2+1)). - Colin Barker, Sep 22 2013

A293990 a(n) = (3*n + ((n-2) mod 4))/2.

Original entry on oeis.org

1, 3, 3, 5, 7, 9, 9, 11, 13, 15, 15, 17, 19, 21, 21, 23, 25, 27, 27, 29, 31, 33, 33, 35, 37, 39, 39, 41, 43, 45, 45, 47, 49, 51, 51, 53, 55, 57, 57, 59, 61, 63, 63, 65, 67, 69, 69, 71, 73, 75, 75, 77, 79, 81, 81, 83, 85, 87, 87, 89, 91, 93, 93
Offset: 0

Views

Author

Dimitris Valianatos, Oct 21 2017

Keywords

Comments

The product (2/3) * (4/3) * (6/5) * (6/7) * (8/9) * (10/9) * (12/11) * (12/13) * ... = Pi/(2*sqrt(3)). The denominators are a(n) for n >= 1 and numerators are a(n-1) + A093148(n) for n >= 1 -> [2, 4, 6, 6, 8, 10, 12, 12, ...].
Let r(n) = (a(n)-1)/(a(n)+1) if a(n) mod 4 = 1, (a(n)+1)/(a(n)-1) otherwise; then Product_{n>=1} r(n) = (2/1) * (2/1) * (2/3) * (4/3) * (4/5) * (4/5) * (6/5) * (6/7) * ... = Pi*sqrt(3)/2 = 2.72069904635132677...
The odd numbers of partial sums this sequence, are identified with the A003215 sequence. Also the prime numbers that appear in partial sums in this sequence, are identified with the A002407 sequence.

Crossrefs

Programs

  • Magma
    [(3*n+((n-2) mod 4))/2 : n in [0..100]]; // Wesley Ivan Hurt, Oct 29 2017
  • Maple
    A293990:=n->(3*n+((n-2) mod 4))/2: seq(A293990(n), n=0..100); # Wesley Ivan Hurt, Oct 29 2017
  • Mathematica
    Table[(3*n + Mod[(n - 2), 4])/2, {n, 0, 100}] (* Wesley Ivan Hurt, Oct 29 2017 *)
    f[n_] := (3n + Mod[n - 2, 4])/2; Array[f, 65, 0] (* or *)
    LinearRecurrence[{1, 0, 0, 1, -1}, {1, 3, 3, 5, 7}, 65] (* or *)
    CoefficientList[ Series[(x^4 + 2x^3 + 2x + 1)/((x - 1)^2 (x^3 + x^2 + x + 1)), {x, 0, 64}], x] (* Robert G. Wilson v, Nov 28 2017 *)
  • PARI
    a(n) = (3*n + (n-2)%4) / 2
    
  • PARI
    Vec(x*(1 + 2*x + 2*x^3 + x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)) + O(x^30)) \\ Colin Barker, Oct 21 2017
    
  • PARI
    first(n) = my(start=[1,3,3,5,7,9,9,11]); if(n<=8, return(start)); my(res=vector(n)); for (i=1, 8, res[i] = start[i]); for(i = 1, n-8 ,res[i+8] = res[i] + 12); res \\ David A. Corneth, Oct 21 2017
    

Formula

Sum_{n>=0} 1/a(n)^2 = 5*Pi^2/36 = 1.3707783890401886970... = 10*A086729.
(a(n) - n) * (-1)^(n+1) = A134967(n) for n >= 0.
a(n) - n = A162330(n) for n >= 0.
a(n) - n = A285869(n+1) for n >= 0.
a(n) + a(n+1) = A157932(n+2) for n >= 0.
a(n) + (2*n+1) = A047298(n+1) for n >= 0.
From Colin Barker, Oct 21 2017: (Start)
G.f.: x*(1 + 2*x + 2*x^3 + x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)).
a(n) = a(n-1) + a(n-4) - a(n-5) for n > 5.
(End)
a(n + 8) = a(n) + 12. - David A. Corneth, Oct 21 2017
a(4*k+4) * a(4*k+3) - a(4*k+2) * a(4*k+1) = 2*A063305(k+3) for k >= 0.
Sum_{n>=0} 1/(a(n) + a(n+2))^2 = (4*Pi^2 - 27) / 108 = (A214549 - 1) / 4.

A330239 Minimum circular (strong) similarity of a length-n binary word.

Original entry on oeis.org

0, 0, 1, 2, 3, 4, 3, 4, 5, 6, 5, 6, 7, 8, 7, 8, 9, 10, 9, 10, 11, 12, 11, 12, 13, 14, 15, 14, 15, 16, 15, 16, 17, 18, 17, 18
Offset: 1

Views

Author

Jeffrey Shallit, Dec 06 2019

Keywords

Comments

The circular (strong) similarity of a word w is the maximum, over all nontrivial cyclic shifts x of w, of the number of positions where x and w agree.
The plausible identification of this sequence with A285869, A162330, A183041 is just illusory because a(27) = 15.
Circular (strong) similarity is basically a one-sided version of autocorrelation, where we only care about agreement of terms, not the difference between agreement and disagreement.

Examples

			For n = 7, one string achieving a(7) = 3 is 0001011.
		

Crossrefs

Programs

  • Python
    # see links for faster version
    from itertools import product
    def css(k, n):
        cs = ((k>>i) | ((((1<1 else 0
    print([a(n) for n in range(1, 16)]) # Michael S. Branicky, Jan 15 2024

Extensions

a(31)-a(36) from Michael S. Branicky, Jan 15 2024
Showing 1-6 of 6 results.