cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A000531 From area of cyclic polygon of 2n + 1 sides.

Original entry on oeis.org

1, 7, 38, 187, 874, 3958, 17548, 76627, 330818, 1415650, 6015316, 25413342, 106853668, 447472972, 1867450648, 7770342787, 32248174258, 133530264682, 551793690628, 2276098026922, 9373521044908, 38546133661492
Offset: 1

Views

Author

Keywords

Comments

Expected number of matches remaining in Banach's original matchbox problem (counted when empty box is chosen), multiplied by 2^(2*n-1). - Michael Steyer, Apr 13 2001
A conjectured definition: Let 0 < a_1 < a_2 <...
a(n) = total weight of upsteps in all Dyck n-paths (A000108) when each upstep is weighted with its position in the path. For example, the Dyck path UDUUDUDD has upsteps in positions 1,3,4,6 and contributes 1+3+4+6=14 to the weight for Dyck 4-paths. The summand (n-k)*binomial(2*n+1, k) in the Maple formula below is the total weight of upsteps terminating at height n-k, 0<=k<=n-1. - David Callan, Dec 29 2006
Catalan transform of binomial transform of squares. - Philippe Deléham, Oct 31 2008
a(n) is also the number of walks of length 2n in the quarter plane starting and ending at the origin using steps {(1,1),(1,0),(-1,0), (-1,-1)} (which appear in Gessel's conjecture) in which the steps (1,0) and (-1,0) appear exactly once each. - Arvind Ayyer, Mar 02 2009
Equals the Catalan sequence, A000108, convolved with A002457: (1, 6, 30, 140, ...). - Gary W. Adamson, May 14 2009
Total number of occurrences of the pattern 213 (or 132) in all skew-indecomposable (n+2)-permutations avoiding the pattern 123. For example, a(1) = 1, since there is one occurrence of the pattern 213 in the set {213, 132}. - Cheyne Homberger, Mar 13 2013

References

  • W. Feller, An Introduction to Probability Theory and Its Applications, Vol. I.

Crossrefs

Cf. A002457 (Banach's modified matchbox problem), A135404, A002457, A258431.

Programs

  • Maple
    f := proc(n) sum((n-k)*binomial(2*n+1,k),k=0..n-1); end;
  • Mathematica
    a[n_] := ((2n+1)!/n!^2-4^n)/2; Table[a[n], {n, 1, 22}] (* Jean-François Alcover, Dec 07 2011, after Pari *)
  • PARI
    a(n)=if(n<1,0,((2*n+1)!/n!^2-4^n)/2)

Formula

a(n) = ((2n+1)!/((n!)^2)-4^n)/2. - Simon Norton (simon(AT)dpmms.cam.ac.uk), May 14 2001
na(n) = (8n-2)a(n-1) - (16n-8)a(n-2), n>1. - Michael Somos, Apr 18 2003
E.g.f.: 1/2*((1+4*x)*exp(2*x)*BesselI(0, 2*x) + 4*x*exp(2*x)*BesselI(1, 2*x) - exp(4*x)). - Vladeta Jovovic, Sep 22 2003
a(n-1) = 4^n*sum_{k=0..n} binomial(2*k+1, k)*4^(-k) = (2*n+1)*(2*n+3)*C(n) - 2^(2*n+1) (C(n) = Catalan); g.f.: x*c(x)/(1-4*x)^(3/2), c(x): g.f. of Catalan numbers A000108. - Wolfdieter Lang
a(n) = Sum_{k=0..n} A039599(n,k)*k^2, for n>=1. - Philippe Deléham, Jun 10 2007
a(n) = Sum_{k=0..n} A106566(n,k)*A001788(k). - Philippe Deléham, Oct 31 2008
(Conjecture) a(n)=2^(2*n)*sum_{k=1..n} cos(k*Pi/(2*n+1))^2*n. - L. Edson Jeffery, Jan 21 2012

Extensions

Moebius reference from Michael Somos

A186229 Expansion of (2F1( (-(1/2), 1/6); (-2/3))( 16 x) -1)/(2*x).

Original entry on oeis.org

1, 14, 182, 2470, 34580, 494760, 7191690, 105793545, 1570873850, 23500272796, 353724885332, 5351515200668, 81313973049064, 1240116577389200, 18973783634054760, 291115203548084370, 4477664537437798980, 69023046543088792440, 1066084706728274263800, 16495237916832025427160, 255635559046076610807120
Offset: 0

Author

Olivier Gérard, Feb 15 2011

Keywords

Comments

Combinatorial interpretation welcome.
Probably a class of paths (Cf. A135404, A000888)

Programs

  • Mathematica
    CoefficientList[Series[(HypergeometricPFQ[{-(1/2), 1/6}, {-(2/3)}, 16 x] - 1)/(2 x), {x, 0, 20}], x]
    FullSimplify[Table[-((2^(1/3 + 4 n) (-(4/3))! (-(1/2) + n)! (1/6 + n)!)/(Pi (-(2/3) + n)! (1 + n)!)), {n, 0, 20}]] (* Benedict W. J. Irwin, Jul 12 2016 *)

Formula

D-finite with recurrence (n+1)*(3n-2)*a(n) = 4*(6n+1)*(2n-1)*a(n-1). - R. J. Mathar, Jul 11 2012
a(n) ~ 3*GAMMA(2/3)*2^(1/3) * 16^n/(Pi*n^(2/3)). - Vaclav Kotesovec, Aug 13 2013
a(n) = -2^(1/3+4*n)*(-4/3)!*(-1/2+n)!*(1/6+n)!/(Pi*(-2/3+n)!*(1+n)!). - Benedict W. J. Irwin, Jul 12 2016

A186231 Expansion of ( 2F1([-1/4, 1/4]; [-1/2], 16*x) - 1 ) / (2*x).

Original entry on oeis.org

1, 15, 210, 3003, 43758, 646646, 9657700, 145422675, 2203961430, 33578000610, 513791607420, 7890371113950, 121548660036300, 1877405874732108, 29065024282889672, 450883717216034179, 7007092303604022630, 109069992321755544170, 1700179760011004467468, 26536589497469056215210, 414670662257153823494820
Offset: 0

Author

Olivier Gérard, Feb 15 2011

Keywords

Comments

Combinatorial interpretation welcome.
Probably a class of paths (Cf. A135404, A000888).
Number of North-East lattice paths from (0,0) to (n,n+1). - Michael D. Weiner, Apr 14 2017

Crossrefs

Cf. A186229.

Programs

  • Mathematica
    CoefficientList[Series[(HypergeometricPFQ[{-(1/4), 1/4}, {-(1/2)}, 16 x] - 1)/(2 x), {x, 0, 20}], x]

Formula

a(n) = A001791(2n+1). - R. J. Mathar, Jul 10 2012
D-finite with recurrence -(n+1)*(2*n-1)*a(n) +2*(4*n-1)*(4*n+1)*a(n-1)=0. - R. J. Mathar, Apr 26 2017

A157513 Triangle of numbers of walks in the quarter-plane, of length 2n beginning and ending at the origin using steps {(1,1), (1,0), (-1,0), (-1,-1)} (Gessel steps) arranged according to the number of times the steps (1,1) and (-1,-1) occur.

Original entry on oeis.org

1, 1, 1, 2, 7, 2, 5, 37, 38, 5, 14, 177, 390, 187, 14, 42, 806, 3065, 3175, 874, 42, 132, 3566, 20742, 37260, 22254, 3958, 132, 429, 15485, 127575, 351821, 365433, 141442, 17548, 429, 1430, 66373, 734332, 2876886, 4597444, 3100670, 839068, 76627, 1430
Offset: 0

Author

Arvind Ayyer, Mar 02 2009

Keywords

Comments

The first and the last terms in each row are Catalan numbers. The sum in each row gives the Gessel sequence.

Examples

			For n=2, there are 2 walks of length 4 where the diagonal steps (1,1) and (-1,-1) occur zero times [(1,0),(1,0),(-1,0),(-1,0)] and [(1,0),(-1,0),(1,0),(-1,0)];
7 walks where the diagonal steps occur once [(1,0),(-1,0),(1,1),(-1,-1)], [(1,1),(-1,-1),(1,0),(-1,0)],  [(1,0),(1,1),(-1,0),(-1,-1)],  [(1,0),(1,1),(-1,-1),(-1,0)],  [(1,1),(1,0),(-1,0),(-1,-1)],  [(1,1),(1,0),(-1,-1),(-1,0)],  [(1,1),(-1,0),(1,0),(-1,-1)];
and finally 2 walks where the diagonal steps occur twice [(1,1),(1,1),(-1,-1),(-1,-1)] and [(1,1),(-1,-1),(1,1),(-1,-1)].
Triangle begins:
1;
1,     1;
2,     7,    2;
5,    37,   38,    5;
14,  177,  390,  187,   14;
42,  806, 3065, 3175,  874,  42;
		

Crossrefs

Programs

  • Maple
    b:= proc(n, k, t, x, y) option remember; `if` (min(n, x, y, k, t, n-x)<0, 0, `if` (n=0, `if` (max(n, k, t)=0, 1, 0), b(n-1, k-1, t, x+1, y+1) +b(n-1, k, t, x+1, y) +b(n-1, k, t, x-1, y) +b(n-1, k, t-1, x-1, y-1))) end: T:= (n,k)-> b(2*n, k, k, 0, 0):
    seq (seq (T(n, k), k=0..n), n=0..8);  # Alois P. Heinz, Jul 04 2011
  • Mathematica
    b[n_, k_, t_, x_, y_] := b[n, k, t, x, y] = If[Min[n, x, y, k, t, n-x] < 0, 0, If[n == 0, If[Max[n, k, t] == 0, 1, 0], b[n-1, k-1, t, x+1, y+1] + b[n - 1, k, t, x+1, y] + b[n-1, k, t, x-1, y] + b[n-1, k, t-1, x-1, y-1]]]; T[n_, k_] := b[2*n, k, k, 0, 0]; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 27 2016, after Alois P. Heinz *)

A292361 The number of paths of length 2m in the plane, starting and ending at (0,1), with unit steps in the four directions (north, east, south, west) and staying in the region y > 0 or x > -y.

Original entry on oeis.org

1, 3, 21, 192, 2009, 22818, 273895, 3421318, 44042729, 580473551, 7796745921, 106365396629, 1470068855112, 20543335134692, 289818595800636, 4122517765350669, 59066177091706608
Offset: 0

Author

Timothy Budd, Sep 15 2017

Keywords

Crossrefs

Cf. A135404.

Programs

  • Mathematica
    a[n_] := SeriesCoefficient[-Pi(1 + 2 Sum[(y+3y^2+y^3)/(1+y+y^2+y^3+y^4) /. y->EllipticNomeQ[m]^l, {l,n+1}])/(4EllipticK[m]) /. m->16x, {x,0,n+1}]

Formula

G.f.: A(x) = 1/(2x) - (Pi / (4 x K(16x))) * (1 + 2 Sum_{n>=1} (q^n + 3q^(2n)+ q^(3n)) / (1 + q^n + q^(2n) + q^(3n) + q^(4n)) ), where q=q(16x) is the Jacobi nome of parameter m=16x and K(16x) is the complete elliptic integral of the first kind of parameter m=16x (proven).
Showing 1-5 of 5 results.