A000531 From area of cyclic polygon of 2n + 1 sides.
1, 7, 38, 187, 874, 3958, 17548, 76627, 330818, 1415650, 6015316, 25413342, 106853668, 447472972, 1867450648, 7770342787, 32248174258, 133530264682, 551793690628, 2276098026922, 9373521044908, 38546133661492
Offset: 1
A186229 Expansion of (2F1( (-(1/2), 1/6); (-2/3))( 16 x) -1)/(2*x).
1, 14, 182, 2470, 34580, 494760, 7191690, 105793545, 1570873850, 23500272796, 353724885332, 5351515200668, 81313973049064, 1240116577389200, 18973783634054760, 291115203548084370, 4477664537437798980, 69023046543088792440, 1066084706728274263800, 16495237916832025427160, 255635559046076610807120
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
Programs
-
Mathematica
CoefficientList[Series[(HypergeometricPFQ[{-(1/2), 1/6}, {-(2/3)}, 16 x] - 1)/(2 x), {x, 0, 20}], x] FullSimplify[Table[-((2^(1/3 + 4 n) (-(4/3))! (-(1/2) + n)! (1/6 + n)!)/(Pi (-(2/3) + n)! (1 + n)!)), {n, 0, 20}]] (* Benedict W. J. Irwin, Jul 12 2016 *)
Formula
D-finite with recurrence (n+1)*(3n-2)*a(n) = 4*(6n+1)*(2n-1)*a(n-1). - R. J. Mathar, Jul 11 2012
a(n) ~ 3*GAMMA(2/3)*2^(1/3) * 16^n/(Pi*n^(2/3)). - Vaclav Kotesovec, Aug 13 2013
a(n) = -2^(1/3+4*n)*(-4/3)!*(-1/2+n)!*(1/6+n)!/(Pi*(-2/3+n)!*(1+n)!). - Benedict W. J. Irwin, Jul 12 2016
A186231 Expansion of ( 2F1([-1/4, 1/4]; [-1/2], 16*x) - 1 ) / (2*x).
1, 15, 210, 3003, 43758, 646646, 9657700, 145422675, 2203961430, 33578000610, 513791607420, 7890371113950, 121548660036300, 1877405874732108, 29065024282889672, 450883717216034179, 7007092303604022630, 109069992321755544170, 1700179760011004467468, 26536589497469056215210, 414670662257153823494820
Offset: 0
Keywords
Comments
Combinatorial interpretation welcome.
Number of North-East lattice paths from (0,0) to (n,n+1). - Michael D. Weiner, Apr 14 2017
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
Crossrefs
Cf. A186229.
Programs
-
Mathematica
CoefficientList[Series[(HypergeometricPFQ[{-(1/4), 1/4}, {-(1/2)}, 16 x] - 1)/(2 x), {x, 0, 20}], x]
Formula
a(n) = A001791(2n+1). - R. J. Mathar, Jul 10 2012
D-finite with recurrence -(n+1)*(2*n-1)*a(n) +2*(4*n-1)*(4*n+1)*a(n-1)=0. - R. J. Mathar, Apr 26 2017
A157513 Triangle of numbers of walks in the quarter-plane, of length 2n beginning and ending at the origin using steps {(1,1), (1,0), (-1,0), (-1,-1)} (Gessel steps) arranged according to the number of times the steps (1,1) and (-1,-1) occur.
1, 1, 1, 2, 7, 2, 5, 37, 38, 5, 14, 177, 390, 187, 14, 42, 806, 3065, 3175, 874, 42, 132, 3566, 20742, 37260, 22254, 3958, 132, 429, 15485, 127575, 351821, 365433, 141442, 17548, 429, 1430, 66373, 734332, 2876886, 4597444, 3100670, 839068, 76627, 1430
Offset: 0
Comments
The first and the last terms in each row are Catalan numbers. The sum in each row gives the Gessel sequence.
Examples
For n=2, there are 2 walks of length 4 where the diagonal steps (1,1) and (-1,-1) occur zero times [(1,0),(1,0),(-1,0),(-1,0)] and [(1,0),(-1,0),(1,0),(-1,0)]; 7 walks where the diagonal steps occur once [(1,0),(-1,0),(1,1),(-1,-1)], [(1,1),(-1,-1),(1,0),(-1,0)], [(1,0),(1,1),(-1,0),(-1,-1)], [(1,0),(1,1),(-1,-1),(-1,0)], [(1,1),(1,0),(-1,0),(-1,-1)], [(1,1),(1,0),(-1,-1),(-1,0)], [(1,1),(-1,0),(1,0),(-1,-1)]; and finally 2 walks where the diagonal steps occur twice [(1,1),(1,1),(-1,-1),(-1,-1)] and [(1,1),(-1,-1),(1,1),(-1,-1)]. Triangle begins: 1; 1, 1; 2, 7, 2; 5, 37, 38, 5; 14, 177, 390, 187, 14; 42, 806, 3065, 3175, 874, 42;
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..5049
- Arvind Ayyer, Towards a human proof of Gessel's conjecture, arXiv:0902.2329 [math.CO], 2009.
- Manuel Kauers, Christoph Koutschan and Doron Zeilberger, Proof of Ira Gessel's Lattice Path Conjecture
- Marko Petkovsek and Herbert S. Wilf, On a conjecture of Ira Gessel, arXiv:0807.3202 [math.CO], 2008.
Programs
-
Maple
b:= proc(n, k, t, x, y) option remember; `if` (min(n, x, y, k, t, n-x)<0, 0, `if` (n=0, `if` (max(n, k, t)=0, 1, 0), b(n-1, k-1, t, x+1, y+1) +b(n-1, k, t, x+1, y) +b(n-1, k, t, x-1, y) +b(n-1, k, t-1, x-1, y-1))) end: T:= (n,k)-> b(2*n, k, k, 0, 0): seq (seq (T(n, k), k=0..n), n=0..8); # Alois P. Heinz, Jul 04 2011
-
Mathematica
b[n_, k_, t_, x_, y_] := b[n, k, t, x, y] = If[Min[n, x, y, k, t, n-x] < 0, 0, If[n == 0, If[Max[n, k, t] == 0, 1, 0], b[n-1, k-1, t, x+1, y+1] + b[n - 1, k, t, x+1, y] + b[n-1, k, t, x-1, y] + b[n-1, k, t-1, x-1, y-1]]]; T[n_, k_] := b[2*n, k, k, 0, 0]; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 27 2016, after Alois P. Heinz *)
A292361 The number of paths of length 2m in the plane, starting and ending at (0,1), with unit steps in the four directions (north, east, south, west) and staying in the region y > 0 or x > -y.
1, 3, 21, 192, 2009, 22818, 273895, 3421318, 44042729, 580473551, 7796745921, 106365396629, 1470068855112, 20543335134692, 289818595800636, 4122517765350669, 59066177091706608
Offset: 0
Links
- T. Budd, Winding of simple walks on the square lattice, arXiv:1709.04042 [math.CO], 2017.
Crossrefs
Cf. A135404.
Programs
-
Mathematica
a[n_] := SeriesCoefficient[-Pi(1 + 2 Sum[(y+3y^2+y^3)/(1+y+y^2+y^3+y^4) /. y->EllipticNomeQ[m]^l, {l,n+1}])/(4EllipticK[m]) /. m->16x, {x,0,n+1}]
Formula
G.f.: A(x) = 1/(2x) - (Pi / (4 x K(16x))) * (1 + 2 Sum_{n>=1} (q^n + 3q^(2n)+ q^(3n)) / (1 + q^n + q^(2n) + q^(3n) + q^(4n)) ), where q=q(16x) is the Jacobi nome of parameter m=16x and K(16x) is the complete elliptic integral of the first kind of parameter m=16x (proven).
Comments
References
Links
Crossrefs
Programs
Maple
Mathematica
PARI
Formula
Extensions