cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136016 a(n) = 9*n^2-1.

Original entry on oeis.org

8, 35, 80, 143, 224, 323, 440, 575, 728, 899, 1088, 1295, 1520, 1763, 2024, 2303, 2600, 2915, 3248, 3599, 3968, 4355, 4760, 5183, 5624, 6083, 6560, 7055, 7568, 8099, 8648, 9215, 9800, 10403, 11024, 11663, 12320, 12995, 13688, 14399, 15128, 15875, 16640
Offset: 1

Views

Author

Artur Jasinski, Dec 10 2007

Keywords

Crossrefs

Programs

Formula

a(n) = A005563(3*n-1). - Paul Curtz, Oct 28 2008
a(2*n) = A136017(n). - Paul Curtz, Sep 30 2008
a(n) = A016777(n)*A016789(n-1). - Reinhard Zumkeller, Feb 15 2009
G.f.: x*(-8-11*x+x^2) / ( x-1 )^3. - R. J. Mathar, Jul 01 2011
From Amiram Eldar, Jul 31 2020: (Start)
Sum_{n>=1} 1/a(n) = 1/2 - sqrt(3)*Pi/18.
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(3)*Pi/9 - 1/2. (End)
From Amiram Eldar, Feb 04 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = 2*Pi/(3*sqrt(3)) (A248897).
Product_{n>=1} (1 - 1/a(n)) = sqrt(2/3)*sin(sqrt(2)*Pi/3). (End)
a(n) = a(-n) for all n in Z. Sum_{n in Z} 1/a(n) = -Pi/3^(3/2) = -A073010. - Michael Somos, May 21 2023
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Wesley Ivan Hurt, Jun 19 2025