A138420
a(n) = ((prime(n))^4-(prime(n))^2)/4.
Original entry on oeis.org
3, 18, 150, 588, 3630, 7098, 20808, 32490, 69828, 176610, 230640, 468198, 706020, 854238, 1219368, 1971918, 3028470, 3460530, 5036658, 6351660, 7098228, 9735960, 11862858, 15683580, 22129968, 26012550, 28135068, 32767038, 35286570
Offset: 1
-
[(NthPrime((n))^4 - NthPrime((n))^2)/4: n in [1..30] ]; // Vincenzo Librandi, Jun 17 2011
-
seq(1/4*(ithprime(i)^4 - ithprime(i)^2), i=1..100); # Robert Israel, Jan 07 2015
-
a = {}; Do[p = Prime[n]; AppendTo[a, (p^4 - p^2)/4], {n, 1, 50}]; a
(#^4-#^2)/4&/@Prime[Range[30]] (* Harvey P. Dale, Aug 01 2025 *)
-
forprime(p=2,1e3,print1((p^4-p^2)/4", ")) \\ Charles R Greathouse IV, Jul 15 2011
A138416
a(n) = (p^3 - p^2)/2, where p = prime(n).
Original entry on oeis.org
2, 9, 50, 147, 605, 1014, 2312, 3249, 5819, 11774, 14415, 24642, 33620, 38829, 50807, 73034, 100949, 111630, 148137, 176435, 191844, 243399, 282449, 348524, 451632, 510050, 541059, 606797, 641574, 715064, 1016127, 1115465, 1276292, 1333149
Offset: 1
-
[(p^3-p^2)/2: p in PrimesUpTo(1000)]; // Vincenzo Librandi, Jun 17 2011
-
a = {}; Do[p = Prime[n]; AppendTo[a, (p^3 - p^2)/2], {n, 1, 50}]; a
(#^3-#^2)/2&/@Prime[Range[50]] (* Harvey P. Dale, Nov 01 2020 *)
-
forprime(p=2,1e3,print1((p^3-p^2)/2", ")) \\ Charles R Greathouse IV, Jun 16 2011
Definition corrected by
T. D. Noe, Aug 25 2008
A138430
a(n) = (prime(n)^5 - prime(n))/30.
Original entry on oeis.org
1, 8, 104, 560, 5368, 12376, 47328, 82536, 214544, 683704, 954304, 2311464, 3861872, 4900280, 7644832, 13939848, 23830808, 28153208, 45004168, 60140976, 69102384, 102568544, 131301352, 186135312, 286244672, 350336680, 386424688, 467517240, 512874648
Offset: 1
-
[(NthPrime((n))^5 - NthPrime((n)))/30: n in [1..30]]; // Vincenzo Librandi, Jun 18 2011
-
Table[p = Prime[n]; (p^5 - p)/30, {n, 50}]
-
forprime(p=2,1e3,print1((p^5-p)/30", ")) \\ Charles R Greathouse IV, Jul 15 2011
A138459
a(n) = ((n-th prime)^6-(n-th prime)^4)/12.
Original entry on oeis.org
4, 54, 1250, 9604, 146410, 399854, 2004504, 3909630, 12313004, 49509670, 73881680, 213654354, 395606540, 526495354, 897861304, 1846372554, 3514034690, 4292210710, 7536519254, 10672906020, 12608819004, 20254042120, 27241076254
Offset: 1
-
a = {}; Do[p = Prime[n]; AppendTo[a, (p^6 - p^4)/12], {n, 1, 24}]; a
-
forprime(p=2,1e3,print1((p^6-p^4)/12", ")) \\ Charles R Greathouse IV, Jul 15 2011
A253655
Number of monic irreducible polynomials of degree 6 over GF(prime(n)).
Original entry on oeis.org
9, 116, 2580, 19544, 295020, 804076, 4022064, 7839780, 24670536, 99133020, 147912160, 427612404, 791672280, 1053546956, 1796518224, 3694034916, 7030054140, 8586690620, 15076346164, 21349986840, 25222305336, 40514492720, 54489965796, 82830096360, 138828513824, 176919851700
Offset: 1
For n=1 the a(1) = 9 irreducible monic polynomials of degree 6 over GF(2) are
x^6+x^5+1, x^6+x^3+1, x^6+x^5+x^4+x^2+1, x^6+x^5+x^3+x^2+1, x^6+x+1, x^6+x^5+x^4+x+1, x^6+x^4+x^3+x+1, x^6+x^5+x^2+x+1, x^6+x^4+x^2+x+1.
-
[(p^6 - p^3 - p^2 + p) div 6: p in PrimesUpTo(110)]; // Vincenzo Librandi, Jan 08 2015
-
f:= p-> (p^6 - p^3 - p^2 + p)/6:
seq(f(ithprime(i)), i=1..100); # Robert Israel, Jan 07 2015
-
Table[(Prime[n]^6 - Prime[n]^3 - Prime[n]^2 + Prime[n]) / 6, {n, 1, 30}] (* Vincenzo Librandi, Jan 08 2015 *)
Showing 1-5 of 5 results.
Comments