A138416
a(n) = (p^3 - p^2)/2, where p = prime(n).
Original entry on oeis.org
2, 9, 50, 147, 605, 1014, 2312, 3249, 5819, 11774, 14415, 24642, 33620, 38829, 50807, 73034, 100949, 111630, 148137, 176435, 191844, 243399, 282449, 348524, 451632, 510050, 541059, 606797, 641574, 715064, 1016127, 1115465, 1276292, 1333149
Offset: 1
-
[(p^3-p^2)/2: p in PrimesUpTo(1000)]; // Vincenzo Librandi, Jun 17 2011
-
a = {}; Do[p = Prime[n]; AppendTo[a, (p^3 - p^2)/2], {n, 1, 50}]; a
(#^3-#^2)/2&/@Prime[Range[50]] (* Harvey P. Dale, Nov 01 2020 *)
-
forprime(p=2,1e3,print1((p^3-p^2)/2", ")) \\ Charles R Greathouse IV, Jun 16 2011
Definition corrected by
T. D. Noe, Aug 25 2008
A138459
a(n) = ((n-th prime)^6-(n-th prime)^4)/12.
Original entry on oeis.org
4, 54, 1250, 9604, 146410, 399854, 2004504, 3909630, 12313004, 49509670, 73881680, 213654354, 395606540, 526495354, 897861304, 1846372554, 3514034690, 4292210710, 7536519254, 10672906020, 12608819004, 20254042120, 27241076254
Offset: 1
-
a = {}; Do[p = Prime[n]; AppendTo[a, (p^6 - p^4)/12], {n, 1, 24}]; a
-
forprime(p=2,1e3,print1((p^6-p^4)/12", ")) \\ Charles R Greathouse IV, Jul 15 2011
A138562
Number of "squashed-tree" graphs with n central nodes, the labeled case, allowing the direct link between L and R.
Original entry on oeis.org
1, 4, 38, 616, 14744, 479364, 20021768, 1031673164, 63597989864, 4579513525216, 377953469391584, 35211153592004064, 3657198048669038384, 419166387797337858500, 52561549979435515611488, 7158828855330149502246076, 1052478318277669232896492064, 166132533639153074372662711680
Offset: 0
a(0) = 1: L--R.
a(1) = 4: L--1--R, 1--L--R, L--R--1 and the 3-cycle L--1--R--L.
a(2) = 38: the 14 examples shown in A138460 plus the same set with an edge joining L and R: 28 in all, plus the following 10 graphs, for a total of 38.
=====
. 1
./..
L---R (number = 2)
.\..
. 2
=====
. 1
./..
L---R (number = 2)
.../
. 2
=====
. 1
./|.
L-|-R (number = 2)
.\|.
. 2
=====
. 1
./|.
L-|-R (number = 4)
..|.
. 2
=====
-
{ a(n) = local(p,q,m); p=partitions(n); sum(j=1,#p, q=p[j]; m=vector(n); for(i=1,#q,m[q[i]]++); n! * prod(i=1,#q,q[i]^(q[i]-2)/q[i]!) / prod(i=1,#m,m[i]!) * (prod(i=1,#q,4^q[i]-1)*2 - 2^#q*prod(i=1,#q,2^q[i]-1) ) ) } \\ Max Alekseyev, May 10 2009
Showing 1-3 of 3 results.
Comments