A140065 a(n) = (7*n^2 - 17*n + 12)/2.
1, 3, 12, 28, 51, 81, 118, 162, 213, 271, 336, 408, 487, 573, 666, 766, 873, 987, 1108, 1236, 1371, 1513, 1662, 1818, 1981, 2151, 2328, 2512, 2703, 2901, 3106, 3318, 3537, 3763, 3996, 4236, 4483, 4737, 4998, 5266, 5541, 5823, 6112, 6408, 6711, 7021, 7338, 7662
Offset: 1
Examples
a(4) = 28 = (1, 3, 3, 1) * (1, 2, 7, 0) = (1 + 6 + 21 + 0).
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[(7*n^2 - 17*n + 12)/2 : n in [1..60]]; // Wesley Ivan Hurt, Oct 10 2021
-
Maple
seq((12-17*n+7*n^2)*1/2, n=1..40); # Emeric Deutsch, May 07 2008
-
Mathematica
Table[(7 n^2 - 17 n + 12)/2, {n, 1, 50}] (* Bruno Berselli, Mar 12 2015 *) LinearRecurrence[{3,-3,1},{1,3,12},50] (* Harvey P. Dale, May 28 2017 *)
-
PARI
x = 'x + O('x^50); Vec(x*(1+6*x^2)/(1-x)^3) \\ G. C. Greubel, Feb 23 2017
Formula
A007318 * [1, 2, 7, 0, 0, 0, ...].
O.g.f.: x*(1+6*x^2)/(1-x)^3. - Alexander R. Povolotsky, May 06 2008
a(n) = 7*n + a(n-1) - 12 for n > 1, a(1)=1. - Vincenzo Librandi, Jul 08 2010
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), n >= 4. - Klaus Purath, Oct 21 2021
E.g.f.: exp(x)*(6 - 5*x + 7*x^2/2) - 6. - Elmo R. Oliveira, Oct 31 2024
Extensions
More terms from R. J. Mathar and Emeric Deutsch, May 06 2008
More terms from Vladimir Joseph Stephan Orlovsky, Oct 25 2008
Comments