cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A140065 a(n) = (7*n^2 - 17*n + 12)/2.

Original entry on oeis.org

1, 3, 12, 28, 51, 81, 118, 162, 213, 271, 336, 408, 487, 573, 666, 766, 873, 987, 1108, 1236, 1371, 1513, 1662, 1818, 1981, 2151, 2328, 2512, 2703, 2901, 3106, 3318, 3537, 3763, 3996, 4236, 4483, 4737, 4998, 5266, 5541, 5823, 6112, 6408, 6711, 7021, 7338, 7662
Offset: 1

Views

Author

Gary W. Adamson, May 03 2008

Keywords

Comments

Binomial transform of [1, 2, 7, 0, 0, 0, ...].
This sequence together with 1, 6, 18, 37, 63, 96, ... with signature (3,-3,1) [not yet in OEIS] contain all numbers k such that 56*k - 47 is a square. - Klaus Purath, Oct 21 2021

Examples

			a(4) = 28 = (1, 3, 3, 1) * (1, 2, 7, 0) = (1 + 6 + 21 + 0).
		

Crossrefs

Programs

  • Magma
    [(7*n^2 - 17*n + 12)/2 : n in [1..60]]; // Wesley Ivan Hurt, Oct 10 2021
  • Maple
    seq((12-17*n+7*n^2)*1/2, n=1..40); # Emeric Deutsch, May 07 2008
  • Mathematica
    Table[(7 n^2 - 17 n + 12)/2, {n, 1, 50}] (* Bruno Berselli, Mar 12 2015 *)
    LinearRecurrence[{3,-3,1},{1,3,12},50] (* Harvey P. Dale, May 28 2017 *)
  • PARI
    x = 'x + O('x^50); Vec(x*(1+6*x^2)/(1-x)^3) \\ G. C. Greubel, Feb 23 2017
    

Formula

A007318 * [1, 2, 7, 0, 0, 0, ...].
a(n) = A000217(n) + 6*A000217(n-2) = (A140064(n) + A140066(n))/2. - R. J. Mathar, May 06 2008
O.g.f.: x*(1+6*x^2)/(1-x)^3. - Alexander R. Povolotsky, May 06 2008
a(n) = 7*n + a(n-1) - 12 for n > 1, a(1)=1. - Vincenzo Librandi, Jul 08 2010
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), n >= 4. - Klaus Purath, Oct 21 2021
E.g.f.: exp(x)*(6 - 5*x + 7*x^2/2) - 6. - Elmo R. Oliveira, Oct 31 2024

Extensions

More terms from R. J. Mathar and Emeric Deutsch, May 06 2008
More terms from Vladimir Joseph Stephan Orlovsky, Oct 25 2008