A229037 The "forest fire": sequence of positive integers where each is chosen to be as small as possible subject to the condition that no three terms a(j), a(j+k), a(j+2k) (for any j and k) form an arithmetic progression.
1, 1, 2, 1, 1, 2, 2, 4, 4, 1, 1, 2, 1, 1, 2, 2, 4, 4, 2, 4, 4, 5, 5, 8, 5, 5, 9, 1, 1, 2, 1, 1, 2, 2, 4, 4, 1, 1, 2, 1, 1, 2, 2, 4, 4, 2, 4, 4, 5, 5, 8, 5, 5, 9, 9, 4, 4, 5, 5, 10, 5, 5, 10, 2, 10, 13, 11, 10, 8, 11, 13, 10, 12, 10, 10, 12, 10, 11, 14, 20, 13
Offset: 1
Links
- Giovanni Resta, Alois P. Heinz, and Charles R Greathouse IV, Table of n, a(n) for n = 1..100000 (1..1000 from Resta, 1001..10000 from Heinz, and 10001..100000 from Greathouse)
- Jean Bickerton, Colored plot of 200000 terms; color is difference from previous term in sequence
- Xan Gregg, Enhanced scatterplot of 10000 terms [In this plot, the points have been made translucent to reduce the information lost to overstriking, and the point size varies with n in an attempt to keep the density comparable.]
- OEIS, Pin plot of 200 terms and scatterplot of 10000 terms
- Sébastien Palcoux, On the first sequence without triple in arithmetic progression (version: 2019-08-21), MathOverflow
- Sébastien Palcoux, Table of n, a(n) for n = 1..1000000
- Sébastien Palcoux, Density plot of the first 1000000 terms
- Reddit User "garnet420", Colored plot of 16 million terms; horizontal divisions are 1000000; vertical divisions are 25000
- Reddit User "garnet420", B/W plot of 16 million terms; horizontal divisions are 1000000; vertical divisions are 25000
- N. J. A. Sloane, New Gilbreath Conjectures, Sum and Erase, Dissecting Polygons, and Other New Sequences, Doron Zeilberger's Exper. Math. Seminar, Rutgers, Sep 14 2023: Video, Slides, Updates. (Mentions this sequence.)
- N. J. A. Sloane and Brady Haran, Amazing Graphs II (including Star Wars), Numberphile video (2019)
- Index entries for sequences with interesting graphs or plots
- Index entries for non-averaging sequences
Crossrefs
For a variant see A309890.
Programs
-
Haskell
import Data.IntMap (empty, (!), insert) a229037 n = a229037_list !! (n-1) a229037_list = f 0 empty where f i m = y : f (i + 1) (insert (i + 1) y m) where y = head [z | z <- [1..], all (\k -> z + m ! (i - k) /= 2 * m ! (i - k `div` 2)) [1, 3 .. i - 1]] -- Reinhard Zumkeller, Apr 26 2014
-
Mathematica
a[1] = 1; a[n_] := a[n] = Block[{z = 1}, While[Catch[ Do[If[z == 2*a[n-k] - a[n-2*k], Throw@True], {k, Floor[(n-1)/2]}]; False], z++]; z]; a /@ Range[100] (* Giovanni Resta, Jan 01 2014 *)
-
PARI
step(v)=my(bad=List(),n=#v+1,t); for(d=1,#v\2,t=2*v[n-d]-v[n-2*d]; if(t>0, listput(bad,t))); bad=Set(bad); for(i=1,#bad, if(bad[i]!=i, return(i))); #bad+1 first(n)=my(v=List([1])); while(n--, listput(v, step(v))); Vec(v) \\ Charles R Greathouse IV, Jan 21 2014
-
Python
A229037_list = [] for n in range(10**6): i, j, b = 1, 1, set() while n-2*i >= 0: b.add(2*A229037_list[n-i]-A229037_list[n-2*i]) i += 1 while j in b: b.remove(j) j += 1 A229037_list.append(j) # Chai Wah Wu, Dec 21 2014
Formula
a(n) <= (n+1)/2. - Charles R Greathouse IV, Jan 21 2014
Comments