Original entry on oeis.org
0, 5, 14, 26, 33, 222, 234, 482, 937, 1170, 1290, 1877, 1897, 3413, 6017, 9365, 47470, 48254, 97421, 102057, 119689, 132418, 192517, 194442
Offset: 1
Cf.
A001590,
A100683,
A231574,
A231575,
A232542,
A214899,
A230607,
A020992,
A232498,
A214727,
A081172,
A214752,
A141523,
A214825,
A235862,
A214827-
A214829,
A243622,
A243623,
A214831,
A141036.
-
a246517 n = a246517_list !! (n-1)
a246517_list = filter ((== 1) . a010051'' . a141036) [0..]
-- Reinhard Zumkeller, Sep 15 2014
-
a={2,1,1}; Print[0]; For[n=3, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[n]]; a=RotateLeft[a]; a[[3]]=sum]
Original entry on oeis.org
2, 11, 2713, 4066709, 289593761, 30236674150891013353640837416685668536004108580572237299601, 45323907186142905348893078704293178796516046414129798590935901
Offset: 1
Cf.
A001590,
A100683,
A231574,
A231575,
A232543,
A214899,
A020992,
A233554.
A214727,
A234696,
A141523,
A235862,
A214825,
A235873,
A242324,
A214827-
A214829,
A242572,
A242576,
A243622,
A244001,
A214831,
A244002,
A141036,
A246517.
-
a246518 n = a246518_list !! (n-1)
a246518_list = filter ((== 1) . a010051'') $ a141036_list
-- Reinhard Zumkeller, Sep 15 2014
-
a={2,1,1}; Print[2]; For[n=3, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[sum]]; a=RotateLeft[a]; a[[3]]=sum]
A144458
Two sequence determinant triangle sequence: a(n)=A000045(n); b(n)=b(n-1)+b(n-2)+b(n-3) :2 start;A141036(n); t(n,m)=t(n,m)=a(m)*b(n)-b(m)*a(n).
Original entry on oeis.org
-2, -2, 0, -4, 2, 2, -6, 3, 3, 0, -10, 6, 6, 2, 3, -16, 13, 13, 10, 15, 17, -26, 25, 25, 24, 36, 47, 31, -42, 49, 49, 56, 84, 119, 119, 112, -68, 95, 95, 122, 183, 271, 318, 385, 329, -110, 182, 182, 254, 381, 580, 741, 991, 1127, 963
Offset: 1
{-2},
{-2, 0},
{-4, 2, 2},
{-6, 3, 3, 0},
{-10, 6, 6, 2, 3},
{-16, 13, 13, 10, 15, 17},
{-26, 25, 25, 24, 36, 47, 31},
{-42, 49, 49, 56, 84, 119, 119, 112},
{-68, 95, 95, 122, 183, 271, 318, 385, 329},
{-110, 182, 182, 254, 381, 580, 741, 991, 1127, 963}
-
Clear[a, b, t, n, m] a[n_] := Fibonacci[n]; b[0] = 2; b[1] = 1; b[2] = 1; b[n_] := b[n] = b[n - 1] + b[n - 2] + b[n - 3]; t[n_, m_] := a[m]*b[n] - b[m]*a[n]; Table[Table[t[n, m], {m, 0, n - 1}], {n, 1, 10}]; Flatten[%]
A214727
a(n) = a(n-1) + a(n-2) + a(n-3) with a(0) = 1, a(1) = a(2) = 2.
Original entry on oeis.org
1, 2, 2, 5, 9, 16, 30, 55, 101, 186, 342, 629, 1157, 2128, 3914, 7199, 13241, 24354, 44794, 82389, 151537, 278720, 512646, 942903, 1734269, 3189818, 5866990, 10791077, 19847885, 36505952, 67144914, 123498751, 227149617, 417793282
Offset: 0
G.f. = 1 + 2*x + 2*x^2 + 5 x^3 + 9*x^4 + 16*x^5 + 30*x^6 + 55*x^7 + ...
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- Martin Burtscher, Igor Szczyrba, and Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
- Index entries for linear recurrences with constant coefficients, signature (1,1,1).
-
a:=[1,2,2];; for n in [4..40] do a[n]:=a[n-1]+a[n-2]+a[n-3]; od; a; # G. C. Greubel, Apr 23 2019
-
a214727 n = a214727_list !! n
a214727_list = 1 : 2 : 2 : zipWith3 (\x y z -> x + y + z)
a214727_list (tail a214727_list) (drop 2 a214727_list)
-- Reinhard Zumkeller, Jul 31 2012
-
R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x-x^2)/(1-x-x^2-x^3) )); // G. C. Greubel, Apr 23 2019
-
LinearRecurrence[{1,1,1},{1,2,2},40] (* Ray Chandler, Dec 08 2013 *)
-
a(n)=([0,1,0; 0,0,1; 1,1,1]^n*[1;2;2])[1,1] \\ Charles R Greathouse IV, Mar 22 2016
-
my(x='x+O('x^40)); Vec((1+x-x^2)/(1-x-x^2-x^3)) \\ G. C. Greubel, Apr 23 2019
-
((1+x-x^2)/(1-x-x^2-x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 23 2019
A214899
a(n) = a(n-1) + a(n-2) + a(n-3) with a(0)=2, a(1)=1, a(2)=2.
Original entry on oeis.org
2, 1, 2, 5, 8, 15, 28, 51, 94, 173, 318, 585, 1076, 1979, 3640, 6695, 12314, 22649, 41658, 76621, 140928, 259207, 476756, 876891, 1612854, 2966501, 5456246, 10035601, 18458348, 33950195, 62444144, 114852687, 211247026, 388543857
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..200 from Robert Price)
- Martin Burtscher, Igor Szczyrba, and Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
- Index entries for linear recurrences with constant coefficients, signature (1,1,1).
-
a:=[2,1,2];; for n in [4..40] do a[n]:=a[n-1]+a[n-2]+a[n-3]; od; a; # G. C. Greubel, Apr 23 2019
-
R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (2-x-x^2)/(1-x-x^2-x^3) )); // G. C. Greubel, Apr 23 2019
-
LinearRecurrence[{1,1,1},{2,1,2},34] (* Ray Chandler, Dec 08 2013 *)
-
a(n)=([0,1,0;0,0,1;1,1,1]^n*[2;1;2])[1,1] \\ Charles R Greathouse IV, Jun 11 2015
-
my(x='x+O('x^40)); Vec((2-x-x^2)/(1-x-x^2-x^3)) \\ G. C. Greubel, Apr 23 2019
-
((2-x-x^2)/(1-x-x^2-x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 23 2019
A214825
a(n) = a(n-1) + a(n-2) + a(n-3), with a(0) = 1, a(1) = a(2) = 3.
Original entry on oeis.org
1, 3, 3, 7, 13, 23, 43, 79, 145, 267, 491, 903, 1661, 3055, 5619, 10335, 19009, 34963, 64307, 118279, 217549, 400135, 735963, 1353647, 2489745, 4579355, 8422747, 15491847, 28493949, 52408543, 96394339, 177296831, 326099713, 599790883, 1103187427
Offset: 0
- Indranil Ghosh, Table of n, a(n) for n = 0..3770
- Martin Burtscher, Igor Szczyrba, and Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
- Index entries for linear recurrences with constant coefficients, signature (1,1,1).
Cf.
A000073,
A000213,
A000288,
A000322,
A000383,
A001644,
A060455,
A136175,
A141036,
A141523,
A214825-
A214831.
-
a:=[1,3,3];; for n in [4..40] do a[n]:=a[n-1]+a[n-2]+a[n-3]; od; a; # G. C. Greubel, Apr 23 2019
-
R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+2*x-x^2)/(1-x-x^2-x^3) )); // G. C. Greubel, Apr 23 2019
-
LinearRecurrence[{1,1,1},{1,3,3},40] (* Harvey P. Dale, Oct 05 2013 *)
-
a(n)=([0,1,0; 0,0,1; 1,1,1]^n*[1;3;3])[1,1] \\ Charles R Greathouse IV, Mar 22 2016
-
my(x='x+O('x^40)); Vec((1+2*x-x^2)/(1-x-x^2-x^3)) \\ G. C. Greubel, Apr 23 2019
-
((1+2*x-x^2)/(1-x-x^2-x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 23 2019
A214827
a(n) = a(n-1) + a(n-2) + a(n-3), with a(0) = 1, a(1) = a(2) = 5.
Original entry on oeis.org
1, 5, 5, 11, 21, 37, 69, 127, 233, 429, 789, 1451, 2669, 4909, 9029, 16607, 30545, 56181, 103333, 190059, 349573, 642965, 1182597, 2175135, 4000697, 7358429, 13534261, 24893387, 45786077, 84213725, 154893189, 284892991, 523999905
Offset: 0
- Robert Price, Table of n, a(n) for n = 0..1000
- Martin Burtscher, Igor Szczyrba, Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
- Index entries for linear recurrences with constant coefficients, signature (1,1,1).
-
a:=[1,5,5];; for n in [4..40] do a[n]:=a[n-1]+a[n-2]+a[n-3]; od; a; # G. C. Greubel, Apr 24 2019
-
R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+4*x-x^2)/(1-x-x^2-x^3) )); // G. C. Greubel, Apr 24 2019
-
LinearRecurrence[{1,1,1},{1,5,5},40] (* Ray Chandler, Dec 08 2013 *)
-
my(x='x+O('x^40)); Vec((1+4*x-x^2)/(1-x-x^2-x^3)) \\ G. C. Greubel, Apr 24 2019
-
((1+4*x-x^2)/(1-x-x^2-x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 24 2019
A214831
a(n) = a(n-1) + a(n-2) + a(n-3), with a(0) = 1, a(1) = a(2) = 9.
Original entry on oeis.org
1, 9, 9, 19, 37, 65, 121, 223, 409, 753, 1385, 2547, 4685, 8617, 15849, 29151, 53617, 98617, 181385, 333619, 613621, 1128625, 2075865, 3818111, 7022601, 12916577, 23757289, 43696467, 80370333, 147824089, 271890889, 500085311, 919800289, 1691776489
Offset: 0
Cf.
A000213,
A000288,
A000322,
A000383,
A060455,
A136175,
A141036,
A141523,
A214825-
A214831,
A244930,
A244931.
-
a:=[1,9,9];; for n in [4..40] do a[n]:=a[n-1]+a[n-2]+a[n-3]; od; a; # G. C. Greubel, Apr 24 2019
-
R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+8*x-x^2)/(1-x-x^2-x^3) )); // G. C. Greubel, Apr 24 2019
-
LinearRecurrence[{1,1,1},{1,9,9},40] (* Harvey P. Dale, Oct 11 2017 *)
-
Vec((x^2-8*x-1)/(x^3+x^2+x-1) + O(x^40)) \\ Michel Marcus, Jul 08 2014
-
((1+8*x-x^2)/(1-x-x^2-x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 24 2019
A214828
a(n) = a(n-1) + a(n-2) + a(n-3), with a(0) = 1, a(1) = a(2) = 6.
Original entry on oeis.org
1, 6, 6, 13, 25, 44, 82, 151, 277, 510, 938, 1725, 3173, 5836, 10734, 19743, 36313, 66790, 122846, 225949, 415585, 764380, 1405914, 2585879, 4756173, 8747966, 16090018, 29594157, 54432141, 100116316, 184142614, 338691071, 622950001
Offset: 0
- Robert Price, Table of n, a(n) for n = 0..1000
- Martin Burtscher, Igor Szczyrba, and Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
- Index entries for linear recurrences with constant coefficients, signature (1,1,1).
-
a:=[1,6,6];; for n in [4..40] do a[n]:=a[n-1]+a[n-2]+a[n-3]; od; a; # G. C. Greubel, Apr 24 2019
-
R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+5*x-x^2)/(1-x-x^2-x^3) )); // G. C. Greubel, Apr 24 2019
-
LinearRecurrence[{1,1,1},{1,6,6},33] (* Ray Chandler, Dec 08 2013 *)
-
my(x='x+O('x^40)); Vec((1+5*x-x^2)/(1-x-x^2-x^3)) \\ G. C. Greubel, Apr 24 2019
-
((1+5*x-x^2)/(1-x-x^2-x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 24 2019
A214829
a(n) = a(n-1) + a(n-2) + a(n-3), with a(0) = 1, a(1) = a(2) = 7.
Original entry on oeis.org
1, 7, 7, 15, 29, 51, 95, 175, 321, 591, 1087, 1999, 3677, 6763, 12439, 22879, 42081, 77399, 142359, 261839, 481597, 885795, 1629231, 2996623, 5511649, 10137503, 18645775, 34294927, 63078205, 116018907, 213392039, 392489151, 721900097, 1327781287, 2442170535
Offset: 0
Cf.
A000213,
A000288,
A000322,
A000383,
A060455,
A136175,
A141036,
A141523,
A214825,
A214826,
A214827,
A214828,
A214830,
A214831.
-
a:=[1,7,7];; for n in [4..40] do a[n]:=a[n-1]+a[n-2]+a[n-3]; od; a; # G. C. Greubel, Apr 24 2019
-
R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+6*x-x^2)/(1-x-x^2-x^3) )); // G. C. Greubel, Apr 24 2019
-
LinearRecurrence[{1,1,1}, {1,7,7}, 40] (* G. C. Greubel, Apr 24 2019 *)
-
Vec((x^2-6*x-1)/(x^3+x^2+x-1) + O(x^40)) \\ Michel Marcus, Jun 04 2017
-
((1+6*x-x^2)/(1-x-x^2-x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 24 2019
Showing 1-10 of 13 results.
Comments