cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A141881 Primes congruent to 1 mod 20.

Original entry on oeis.org

41, 61, 101, 181, 241, 281, 401, 421, 461, 521, 541, 601, 641, 661, 701, 761, 821, 881, 941, 1021, 1061, 1181, 1201, 1301, 1321, 1361, 1381, 1481, 1601, 1621, 1721, 1741, 1801, 1861, 1901, 2081, 2141, 2161, 2221, 2281, 2341, 2381, 2441, 2521, 2621, 2741, 2801
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Comments

Such a prime is representable by either both or neither of the quadratic forms x^2 + 20 y^2 and x^2 + 100 y^2. See the Brink link. - Robert Israel, Jun 11 2014

Crossrefs

Programs

A141882 Primes congruent to 7 mod 20.

Original entry on oeis.org

7, 47, 67, 107, 127, 167, 227, 307, 347, 367, 467, 487, 547, 587, 607, 647, 727, 787, 827, 887, 907, 947, 967, 1087, 1187, 1307, 1327, 1367, 1427, 1447, 1487, 1567, 1607, 1627, 1667, 1747, 1787, 1847, 1867, 1907, 1987, 2027, 2087, 2207, 2267, 2287, 2347, 2447
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Crossrefs

Programs

A141887 Primes congruent to 19 mod 20.

Original entry on oeis.org

19, 59, 79, 139, 179, 199, 239, 359, 379, 419, 439, 479, 499, 599, 619, 659, 719, 739, 839, 859, 919, 1019, 1039, 1259, 1279, 1319, 1399, 1439, 1459, 1499, 1559, 1579, 1619, 1699, 1759, 1879, 1979, 1999, 2039, 2099, 2179, 2239, 2339, 2399, 2459, 2539, 2579, 2659
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Crossrefs

Programs

A141885 Primes congruent to 13 mod 20.

Original entry on oeis.org

13, 53, 73, 113, 173, 193, 233, 293, 313, 353, 373, 433, 593, 613, 653, 673, 733, 773, 853, 953, 1013, 1033, 1093, 1153, 1193, 1213, 1373, 1433, 1453, 1493, 1553, 1613, 1693, 1733, 1753, 1873, 1913, 1933, 1973, 1993, 2053, 2113, 2153, 2213, 2273, 2293, 2333, 2393
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Crossrefs

Programs

Formula

a(n) ~ 8n log n. - Charles R Greathouse IV, Jul 02 2016

A102851 Primes of the form 19n + 5.

Original entry on oeis.org

5, 43, 157, 233, 271, 347, 461, 499, 613, 727, 1031, 1069, 1259, 1297, 1373, 1487, 1601, 1753, 1867, 2399, 2437, 2551, 2741, 2969, 3083, 3121, 3463, 3539, 3691, 3767, 3881, 3919, 4261, 4337, 4451, 4603, 4679, 4793, 4831, 5021, 5059, 5477, 5591, 5743
Offset: 1

Views

Author

Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Feb 28 2005

Keywords

Crossrefs

Programs

A141869 Primes congruent to 2 mod 19.

Original entry on oeis.org

2, 59, 97, 173, 211, 401, 439, 743, 857, 971, 1009, 1123, 1237, 1427, 1579, 1693, 1997, 2111, 2339, 2377, 2719, 2833, 2909, 3023, 3061, 3137, 3251, 3517, 3593, 3631, 3821, 4049, 4201, 4391, 4657, 4733, 4999, 5113, 5189, 5227, 5303, 5417, 5531, 5569, 5683
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Crossrefs

Programs

Formula

{2} UNION A142152. - R. J. Mathar, Jul 20 2008
a(n) ~ 18n log n. - Charles R Greathouse IV, Jul 02 2016

A141886 Primes congruent to 17 mod 20.

Original entry on oeis.org

17, 37, 97, 137, 157, 197, 257, 277, 317, 337, 397, 457, 557, 577, 617, 677, 757, 797, 857, 877, 937, 977, 997, 1097, 1117, 1217, 1237, 1277, 1297, 1597, 1637, 1657, 1697, 1777, 1877, 1997, 2017, 2137, 2237, 2297, 2357, 2377, 2417, 2437, 2477, 2557, 2617, 2657
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Crossrefs

Programs

Formula

a(n) ~ 8n log n. - Charles R Greathouse IV, Jul 02 2016

A325073 Prime numbers congruent to 9 modulo 20 representable by x^2 + 20*y^2.

Original entry on oeis.org

29, 89, 229, 349, 509, 709, 769, 809, 1009, 1049, 1109, 1229, 1249, 1289, 1409, 1549, 1669, 1709, 1789, 2029, 2069, 2089, 2389, 2729, 3049, 3089, 3169, 3329, 3389, 3469, 3529, 3929, 3989, 4049, 4229, 4289, 4549, 4649, 4729, 4789, 5009, 5209, 5669, 5689, 5849
Offset: 1

Views

Author

Rémy Sigrist, Mar 27 2019

Keywords

Comments

Brink showed that prime numbers congruent to 9 modulo 20 are representable by exactly one of the quadratic forms x^2 + 20*y^2 or x^2 + 100*y^2. This sequence corresponds to those representable by the first form, and A325074 corresponds to those representable by the second form.

Examples

			Regarding 1009:
- 1009 is a prime number,
- 1009 = 50*20 + 9,
- 1009 = 17^2 + 20*6^2,
- hence 1009 belongs to this sequence.
		

Crossrefs

See A325067 for similar results.

Programs

  • PARI
    See Links section.

A325074 Prime numbers congruent to 9 modulo 20 representable by x^2 + 100*y^2.

Original entry on oeis.org

109, 149, 269, 389, 409, 449, 569, 829, 929, 1069, 1129, 1429, 1489, 1609, 1889, 1949, 2129, 2269, 2309, 2549, 2609, 2689, 2749, 2789, 2909, 2969, 3109, 3209, 3229, 3449, 3709, 3769, 3889, 4129, 4349, 4409, 4889, 4909, 4969, 5189, 5309, 5449, 5569, 5749, 6029
Offset: 1

Views

Author

Rémy Sigrist, Mar 27 2019

Keywords

Comments

Brink showed that prime numbers congruent to 9 modulo 20 are representable by exactly one of the quadratic forms x^2 + 20*y^2 or x^2 + 100*y^2. A325073 corresponds to those representable by the first form, and this sequence corresponds to those representable by the second form.

Examples

			Regarding 4409:
- 4409 is a prime number,
- 4409 = 220*20 + 9,
- 4409 = 53^2 + 100*4^2,
- hence 4409 belongs to this sequence.
		

Crossrefs

See A325067 for similar results.

Programs

  • PARI
    See Links section.

A244767 Prime numbers ending in the prime number 29.

Original entry on oeis.org

29, 229, 829, 929, 1129, 1229, 1429, 2029, 2129, 2729, 3229, 3329, 3529, 3929, 4129, 4229, 4729, 6029, 6229, 6329, 6529, 6829, 7129, 7229, 7529, 7829, 8329, 8429, 8629, 8929, 9029, 9629, 9829, 9929, 10429, 10529, 10729, 11329, 12329, 12829, 13229, 13729
Offset: 1

Views

Author

Vincenzo Librandi, Jul 06 2014

Keywords

Comments

Also primes of the form 100*n+29. Subsequence of A141883, A141930.

Crossrefs

Cf. similar sequences listed in A244763.

Programs

  • Magma
    [n: n in PrimesUpTo(16000) | n mod 100 eq 29];
    
  • Mathematica
    Select[Prime[Range[5, 6000]], Take[IntegerDigits[#], -2]=={2, 9} &]
    Select[Prime[Range[6000]],Mod[#,100]==29&] (* Harvey P. Dale, Oct 05 2021 *)
  • PARI
    select(x->(x % 100)==29, primes(2000)) \\ Michel Marcus, Jul 06 2014
Showing 1-10 of 15 results. Next