cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A141881 Primes congruent to 1 mod 20.

Original entry on oeis.org

41, 61, 101, 181, 241, 281, 401, 421, 461, 521, 541, 601, 641, 661, 701, 761, 821, 881, 941, 1021, 1061, 1181, 1201, 1301, 1321, 1361, 1381, 1481, 1601, 1621, 1721, 1741, 1801, 1861, 1901, 2081, 2141, 2161, 2221, 2281, 2341, 2381, 2441, 2521, 2621, 2741, 2801
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Comments

Such a prime is representable by either both or neither of the quadratic forms x^2 + 20 y^2 and x^2 + 100 y^2. See the Brink link. - Robert Israel, Jun 11 2014

Crossrefs

Programs

A141883 Primes congruent to 9 mod 20.

Original entry on oeis.org

29, 89, 109, 149, 229, 269, 349, 389, 409, 449, 509, 569, 709, 769, 809, 829, 929, 1009, 1049, 1069, 1109, 1129, 1229, 1249, 1289, 1409, 1429, 1489, 1549, 1609, 1669, 1709, 1789, 1889, 1949, 2029, 2069, 2089, 2129, 2269, 2309, 2389, 2549, 2609, 2689, 2729
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Crossrefs

Programs

A141887 Primes congruent to 19 mod 20.

Original entry on oeis.org

19, 59, 79, 139, 179, 199, 239, 359, 379, 419, 439, 479, 499, 599, 619, 659, 719, 739, 839, 859, 919, 1019, 1039, 1259, 1279, 1319, 1399, 1439, 1459, 1499, 1559, 1579, 1619, 1699, 1759, 1879, 1979, 1999, 2039, 2099, 2179, 2239, 2339, 2399, 2459, 2539, 2579, 2659
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Crossrefs

Programs

A141885 Primes congruent to 13 mod 20.

Original entry on oeis.org

13, 53, 73, 113, 173, 193, 233, 293, 313, 353, 373, 433, 593, 613, 653, 673, 733, 773, 853, 953, 1013, 1033, 1093, 1153, 1193, 1213, 1373, 1433, 1453, 1493, 1553, 1613, 1693, 1733, 1753, 1873, 1913, 1933, 1973, 1993, 2053, 2113, 2153, 2213, 2273, 2293, 2333, 2393
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Crossrefs

Programs

Formula

a(n) ~ 8n log n. - Charles R Greathouse IV, Jul 02 2016

A102851 Primes of the form 19n + 5.

Original entry on oeis.org

5, 43, 157, 233, 271, 347, 461, 499, 613, 727, 1031, 1069, 1259, 1297, 1373, 1487, 1601, 1753, 1867, 2399, 2437, 2551, 2741, 2969, 3083, 3121, 3463, 3539, 3691, 3767, 3881, 3919, 4261, 4337, 4451, 4603, 4679, 4793, 4831, 5021, 5059, 5477, 5591, 5743
Offset: 1

Views

Author

Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Feb 28 2005

Keywords

Crossrefs

Programs

A141869 Primes congruent to 2 mod 19.

Original entry on oeis.org

2, 59, 97, 173, 211, 401, 439, 743, 857, 971, 1009, 1123, 1237, 1427, 1579, 1693, 1997, 2111, 2339, 2377, 2719, 2833, 2909, 3023, 3061, 3137, 3251, 3517, 3593, 3631, 3821, 4049, 4201, 4391, 4657, 4733, 4999, 5113, 5189, 5227, 5303, 5417, 5531, 5569, 5683
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Crossrefs

Programs

Formula

{2} UNION A142152. - R. J. Mathar, Jul 20 2008
a(n) ~ 18n log n. - Charles R Greathouse IV, Jul 02 2016

A141886 Primes congruent to 17 mod 20.

Original entry on oeis.org

17, 37, 97, 137, 157, 197, 257, 277, 317, 337, 397, 457, 557, 577, 617, 677, 757, 797, 857, 877, 937, 977, 997, 1097, 1117, 1217, 1237, 1277, 1297, 1597, 1637, 1657, 1697, 1777, 1877, 1997, 2017, 2137, 2237, 2297, 2357, 2377, 2417, 2437, 2477, 2557, 2617, 2657
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Crossrefs

Programs

Formula

a(n) ~ 8n log n. - Charles R Greathouse IV, Jul 02 2016

A244773 Prime numbers ending in the prime number 67.

Original entry on oeis.org

67, 167, 367, 467, 967, 1367, 1567, 1667, 1867, 2267, 2467, 2767, 3067, 3167, 3467, 3767, 3967, 4567, 4967, 5167, 5867, 6067, 6367, 6967, 7867, 8167, 8467, 8867, 9067, 9467, 9767, 9967, 10067, 10267, 10567, 10667, 10867, 11467, 11867, 12967, 13267
Offset: 1

Views

Author

Vincenzo Librandi, Jul 07 2014

Keywords

Comments

Also primes of the form 100*n+67. Subsequence of A141882, A141940.

Crossrefs

Cf. similar sequences listed in A244763.

Programs

  • Magma
    [n: n in PrimesUpTo(14000) | n mod 100 eq 67];
    
  • Mathematica
    Select[Prime[Range[5, 6000]], Take[IntegerDigits[#], -2]=={6, 7} &]
  • PARI
    select(x->(x % 100)==67, primes(2000)) \\ Michel Marcus, Jul 07 2014

A244770 Prime numbers ending in the prime number 47.

Original entry on oeis.org

47, 347, 547, 647, 947, 1447, 1747, 1847, 2347, 2447, 2647, 3347, 3547, 3847, 3947, 4447, 4547, 5147, 5347, 5647, 6047, 6247, 6547, 6947, 7247, 7547, 8147, 8447, 8647, 8747, 9547, 10247, 10847, 11047, 11447, 12347, 12547, 12647, 13147, 14347, 14447, 14747
Offset: 1

Views

Author

Vincenzo Librandi, Jul 06 2014

Keywords

Comments

Also primes of the form 100*n+47. Subsequence A141882, A141944.

Crossrefs

Cf. similar sequences listed in A244763.

Programs

  • Magma
    [n: n in PrimesUpTo(16000) | n mod 100 eq 47];
    
  • Mathematica
    Select[Prime[Range[5, 6000]], Take[IntegerDigits[#], -2]=={4, 7} &]
  • PARI
    select(x->(x % 100)==47, primes(2000)) \\ Michel Marcus, Jul 06 2014

A332078 Primes p = k*2^m + 1 such that k + 2^m is not prime, where k and m are the odd part and 2-valuation, respectively, of p-1.

Original entry on oeis.org

47, 67, 97, 107, 127, 137, 151, 167, 179, 181, 227, 239, 263, 283, 293, 307, 347, 349, 367, 431, 439, 457, 461, 467, 487, 491, 503, 547, 557, 571, 587, 599, 607, 617, 641, 643, 647, 661, 683, 719, 727, 733, 739, 751, 769, 787, 797, 811, 821, 823, 827, 853, 857, 887, 907
Offset: 1

Views

Author

M. F. Hasler, Aug 13 2020

Keywords

Comments

It appears that the sequence of odd numbers k*2^m+1 such that k + 2^m is prime (A332075) mainly consists of the primes. This sequence lists the "exceptions": the complement of A332075 within the primes. (The exceptions become more frequent as the numbers grow, the asymptotic density of this subset within the primes might well approach one. See also A332079.)
These are primes of the form p = (w-2^m)*2^m + 1, where w is an odd composite number and 1 < 2^m < w. There are infinitely many primes of this form, because all primes p > 7 such that p == 7 (mod 20) are in this sequence. - Thomas Ordowski, Aug 13 2020

Crossrefs

Cf. A000040 (primes), A000265 (odd part), A007814 (2-valuation), A332075.
The terms A141882 > 7 are an infinite subsequence. - Thomas Ordowski, Aug 13 2020

Programs

  • Maple
    filter:= proc(p) local k,m;
       if not isprime(p) then return false fi;
       m:= padic:-ordp(p-1,2);
       k:= (p-1)/2^m;
       not isprime(k+2^m);
    end proc:
    select(filter, [seq(i,i=3..1000,2)]); # Robert Israel, Sep 14 2020
  • Mathematica
    Select[Range[1000], PrimeQ[#] && !PrimeQ[(m = 2^IntegerExponent[# - 1, 2]) + (# - 1)/m] &] (* Amiram Eldar, Aug 14 2020 *)
  • PARI
    (A332078_upto(N)=[p|p<-primes([1,N]),!is_A332075(p)])(1000)
Showing 1-10 of 15 results. Next