A088695
E.g.f. satisfies A(x) = f(x*A(x)), where f(x) = exp(x+x^2).
Original entry on oeis.org
1, 1, 5, 40, 485, 7776, 156457, 3788800, 107414505, 3491200000, 128019454541, 5229222395904, 235490648957005, 11592449531084800, 619331166211640625, 35691050995648823296, 2206955604752999720273, 145757527499874820423680, 10240455593560436925898645
Offset: 0
-
Table[n!*SeriesCoefficient[(E^(x+x^2))^(n+1)/(n+1),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Jan 24 2014 *)
-
a(n)=n!*polcoeff(exp(x+x^2)^(n+1)+x*O(x^n),n,x)/(n+1)
A362694
E.g.f. satisfies A(x) = exp(x + x * A(x)^2).
Original entry on oeis.org
1, 2, 12, 152, 2960, 78112, 2607808, 105432448, 5008584960, 273482293760, 16878251101184, 1161918967060480, 88277165100666880, 7337286679766179840, 662287143981044121600, 64516370031367063175168, 6746443728505612426870784, 753763691778003738319519744
Offset: 0
A362474
E.g.f. satisfies A(x) = exp(x + x^2/2 * A(x)^2).
Original entry on oeis.org
1, 1, 2, 10, 70, 646, 7576, 106744, 1761628, 33361948, 712950616, 16976294776, 445751093800, 12795850109992, 398697898011232, 13401365473319776, 483376669737381136, 18623161719254837008, 763300232417720682784, 33163224556779213475744
Offset: 0
-
nmax = 20; A[_] = 1;
Do[A[x_] = Exp[x + x^2/2*A[x]^2] + O[x]^(nmax+1) // Normal, {nmax}];
CoefficientList[A[x], x]*Range[0, nmax]! (* Jean-François Alcover, Mar 04 2024 *)
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(-x^2*exp(2*x))/2)))
A362472
E.g.f. satisfies A(x) = exp(x + x^3 * A(x)^3).
Original entry on oeis.org
1, 1, 1, 7, 97, 961, 10201, 177241, 3801505, 80718625, 1887205681, 52896262321, 1648697978401, 54216677033377, 1928791931034697, 75326014326206281, 3159713152034201281, 140373558362282197441, 6632746205445950124385, 333591744669464008432225
Offset: 0
A363354
E.g.f. satisfies A(x) = exp(x * (1 + x * A(x)^3)).
Original entry on oeis.org
1, 1, 3, 25, 277, 4221, 81421, 1891429, 51638217, 1618907257, 57332786041, 2264047223241, 98641443498973, 4700569138096885, 243213757144477029, 13579261873673960941, 813757288951509415441, 52098716516012891238129, 3548972379593741013388657
Offset: 0
A363529
E.g.f. satisfies A(x) = exp(x * (1 + x * A(x)^4)).
Original entry on oeis.org
1, 1, 3, 31, 409, 7361, 170251, 4732351, 154694961, 5814634753, 246946119571, 11698927124831, 611660759515081, 34984757221103041, 2173041881789331099, 145669007565799127551, 10482025117382045382241, 805892200757926620144641
Offset: 0
A362473
E.g.f. satisfies A(x) = exp(x + x^4 * A(x)^4).
Original entry on oeis.org
1, 1, 1, 1, 25, 601, 9001, 105001, 1231441, 24146641, 740098801, 22443260401, 607394284201, 16102368745321, 497289446373721, 19072987370400601, 806135144596672801, 33945128330918599201, 1426006261391514829921, 63478993000497055809121
Offset: 0
A362475
E.g.f. satisfies A(x) = exp(x + 3*x^2/2 * A(x)^2).
Original entry on oeis.org
1, 1, 4, 28, 298, 4186, 74116, 1578340, 39394972, 1127378332, 36411516496, 1310173698736, 51982859674648, 2254757407407064, 106150698182657584, 5390926011965379376, 293782337188718257936, 17100576708082841577232, 1058920120014192744673600
Offset: 0
A362480
E.g.f. satisfies A(x) = exp(x - x^2 * A(x)^2).
Original entry on oeis.org
1, 1, -1, -17, -47, 961, 14191, -35825, -4258463, -46744703, 1252890271, 49630926511, 61171154353, -41944148256191, -1033550755723121, 24977027757497551, 2117415434541888961, 20487158235798909697, -3240242006475108681665, -146763820123398901335185
Offset: 0
A362483
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..floor(n/2)} (k/2)^j * (2*j+1)^(n-j-1) / (j! * (n-2*j)!).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 10, 1, 1, 1, 4, 19, 70, 1, 1, 1, 5, 28, 169, 646, 1, 1, 1, 6, 37, 298, 2041, 7576, 1, 1, 1, 7, 46, 457, 4186, 30811, 106744, 1, 1, 1, 8, 55, 646, 7081, 74116, 560827, 1761628, 1, 1, 1, 9, 64, 865, 10726, 141901, 1578340, 11957905, 33361948, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, ...
1, 10, 19, 28, 37, 46, ...
1, 70, 169, 298, 457, 646, ...
1, 646, 2041, 4186, 7081, 10726, ...
Showing 1-10 of 15 results.
Comments