A144065 Values of k such that the expression sqrt(4!*(k+1) + 1) yields an integer.
0, 1, 4, 6, 11, 14, 21, 25, 34, 39, 50, 56, 69, 76, 91, 99, 116, 125, 144, 154, 175, 186, 209, 221, 246, 259, 286, 300, 329, 344, 375, 391, 424, 441, 476, 494, 531, 550, 589, 609, 650, 671, 714, 736, 781, 804, 851, 875, 924, 949, 1000, 1026, 1079, 1106, 1161, 1189, 1246, 1275, 1334, 1364, 1425
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Crossrefs
Programs
-
Magma
[(-3+2*(-1)^n*n+3*(-1)^n+6*n^2+18*n)/16: n in [0..60]]; // Vincenzo Librandi, Jul 16 2016
-
Maple
seq(seq(((24*a+b)^2-25)/24, b=[5,7,11,13,17,19,23,25]),a=0..10); # Robert Israel, Jul 15 2016
-
Mathematica
LinearRecurrence[{0,3,0,-3,0,1}, {0, 1, 4, 6, 11, 14}, 50] (* G. C. Greubel, Jul 15 2016 *) Select[Range[0,1500],IntegerQ[Sqrt[4!(#+1)+1]]&] (* Harvey P. Dale, Sep 20 2019 *)
-
PARI
j=[];for(n=0, 300,if((floor(sqrt(4!*(n+1) + 1))) == ceil(sqrt(4!*(n+1) + 1)), j=concat(j, n))); j
Formula
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6). - Jaume Oliver Lafont, Jan 21 2009
a(n) = (-3 + 2*(-1)^n*n + 3*(-1)^n + 6*n^2 + 18*n)/16. - Alexander R. Povolotsky, Jan 27 2009
a(n) = A001318(n+1) - 1. - Peter Bala, Mar 22 2009
G.f.: x*(1 + 3*x - x^3)/((1 + x)^2*(1 - x)^3). - Jaume Oliver Lafont, Aug 31 2009
a(n) = Sum_{i=1..n+3} numerator(i/2) - denominator(i/2). - Wesley Ivan Hurt, Feb 26 2017
Sum_{n>=1} 1/a(n) = (93+10*sqrt(3)*Pi)/75. - Amiram Eldar, Sep 22 2022
Comments