cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144065 Values of k such that the expression sqrt(4!*(k+1) + 1) yields an integer.

Original entry on oeis.org

0, 1, 4, 6, 11, 14, 21, 25, 34, 39, 50, 56, 69, 76, 91, 99, 116, 125, 144, 154, 175, 186, 209, 221, 246, 259, 286, 300, 329, 344, 375, 391, 424, 441, 476, 494, 531, 550, 589, 609, 650, 671, 714, 736, 781, 804, 851, 875, 924, 949, 1000, 1026, 1079, 1106, 1161, 1189, 1246, 1275, 1334, 1364, 1425
Offset: 0

Views

Author

Keywords

Comments

Integers of form m*(m+5)/6 (nonnegative values of m are listed in A032766). - Bruno Berselli, Jul 18 2016

Crossrefs

Cf. sequences of the form m*(m+k)/(k+1) listed in A274978. [Bruno Berselli, Jul 25 2016]

Programs

  • Magma
    [(-3+2*(-1)^n*n+3*(-1)^n+6*n^2+18*n)/16: n in [0..60]]; // Vincenzo Librandi, Jul 16 2016
  • Maple
    seq(seq(((24*a+b)^2-25)/24, b=[5,7,11,13,17,19,23,25]),a=0..10); # Robert Israel, Jul 15 2016
  • Mathematica
    LinearRecurrence[{0,3,0,-3,0,1}, {0, 1, 4, 6, 11, 14}, 50] (* G. C. Greubel, Jul 15 2016 *)
    Select[Range[0,1500],IntegerQ[Sqrt[4!(#+1)+1]]&] (* Harvey P. Dale, Sep 20 2019 *)
  • PARI
    j=[];for(n=0, 300,if((floor(sqrt(4!*(n+1) + 1))) == ceil(sqrt(4!*(n+1) + 1)), j=concat(j, n))); j
    

Formula

a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6). - Jaume Oliver Lafont, Jan 21 2009
a(n) = (-3 + 2*(-1)^n*n + 3*(-1)^n + 6*n^2 + 18*n)/16. - Alexander R. Povolotsky, Jan 27 2009
a(n) = A001318(n+1) - 1. - Peter Bala, Mar 22 2009
G.f.: x*(1 + 3*x - x^3)/((1 + x)^2*(1 - x)^3). - Jaume Oliver Lafont, Aug 31 2009
a(n) = Sum_{i=1..n+3} numerator(i/2) - denominator(i/2). - Wesley Ivan Hurt, Feb 26 2017
Sum_{n>=1} 1/a(n) = (93+10*sqrt(3)*Pi)/75. - Amiram Eldar, Sep 22 2022