cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A090986 Decimal expansion of Pi/sinh(Pi).

Original entry on oeis.org

2, 7, 2, 0, 2, 9, 0, 5, 4, 9, 8, 2, 1, 3, 3, 1, 6, 2, 9, 5, 0, 2, 3, 6, 5, 8, 3, 6, 7, 2, 0, 3, 7, 5, 5, 5, 8, 4, 0, 7, 1, 8, 3, 6, 3, 4, 6, 0, 3, 1, 5, 9, 4, 9, 5, 0, 6, 8, 9, 6, 7, 8, 3, 8, 5, 6, 2, 4, 6, 1, 9, 1, 3, 6, 9, 4, 8, 7, 8, 8, 8, 1, 9, 1, 1, 5, 3, 1, 1, 7, 2, 1, 0, 6, 9, 3, 7, 6, 4, 4, 8, 6, 1, 0
Offset: 0

Views

Author

Benoit Cloitre, Feb 28 2004

Keywords

Comments

Or, decimal expansion of Pi * csch(Pi).

Examples

			0.272029054982133162950236583672...
		

References

  • Jonathan M. Borwein, David H. Bailey, and Roland Girgensohn, "Two Products", Section 1.2 in Experimentation in Mathematics: Computational Paths to Discovery, Natick, MA: A. K. Peters, 2004, pp. 4-7.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Pi(R)/Sinh(Pi(R)); // G. C. Greubel, Feb 02 2019
    
  • Mathematica
    Re[N[Gamma[1+I]*Gamma[1-I], 104]] (* Vaclav Kotesovec, Dec 09 2015 *)
    RealDigits[Pi/Sinh[Pi],10,120][[1]] (* Harvey P. Dale, May 16 2019 *)
  • PARI
    default(realprecision, 100);  Pi/sinh(Pi) \\ G. C. Greubel, Feb 02 2019
    
  • Sage
    numerical_approx(pi/sinh(pi), digits=100) # G. C. Greubel, Feb 02 2019

Formula

Equals Pi/sinh(Pi) = Product_{k>=1} k^2/(k^2+1).
Equals Pi * csch(Pi) = Product_{n >= 2} (n^2 - 1)/(n^2 + 1). - Jonathan Vos Post, Dec 07 2005
Equals Gamma(1+i)*Gamma(1-i), where i is the imaginary unit. - Vaclav Kotesovec, Dec 10 2015
Equals 1 - 2*Sum_{n >= 1} (-1)^(n+1)/(n^2 + 1). - Peter Bala, Jan 01 2023
Equals A212879^2. - Amiram Eldar, Oct 25 2024

A255435 Product_{k=0..n} (k^5 + 1).

Original entry on oeis.org

1, 2, 66, 16104, 16506600, 51599631600, 401290334953200, 6744887949893385600, 221023233230056352726400, 13051421922234827628493920000, 1305155243645404997677020493920000, 210197862299579765685879504586803840000, 52304164669591331834914454764848159918720000
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 23 2015

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[k^5 + 1, {k, 0, n}], {n, 0, 15}]
  • PARI
    a(n) = prod(k=1, n, 1+k^5); \\ Michel Marcus, Jan 25 2016

Formula

a(n) ~ c * n^(5*n+5/2) / exp(5*n), where c = 4 * sqrt(2) * Pi^(5/2) / abs(Gamma(3/4 + sqrt(5)/4 + i*sqrt(5/8 + sqrt(5)/8)) * Gamma(3/4 - sqrt(5)/4 + i*sqrt(5/8 - sqrt(5)/8)))^2 = 205.260576646551853296... .

A175616 Decimal expansion of product_{n>=2} (1-n^(-5)).

Original entry on oeis.org

9, 6, 3, 2, 5, 6, 5, 6, 1, 7, 5, 7, 5, 5, 9, 0, 9, 7, 3, 7, 3, 0, 4, 6, 0, 3, 4, 8, 8, 3, 9, 7, 5, 1, 9, 5, 5, 4, 3, 5, 2, 0, 7, 5, 7, 8, 5, 3, 4, 2, 2, 6, 3, 7, 3, 9, 5, 1, 6, 8, 8, 5, 0, 4, 2, 7, 6, 9, 4, 4, 2, 1, 8, 8, 7, 6, 7, 8, 1, 3, 0, 4, 6, 3, 6, 3, 5, 8, 0, 4, 6, 8, 6, 0, 9, 7, 9, 6, 9, 8, 7, 0, 9, 6, 8
Offset: 0

Views

Author

R. J. Mathar, Jul 26 2010

Keywords

Examples

			0.96325656175755909737304603488397519554352075785342263739516...
		

Crossrefs

Programs

  • Mathematica
    g[k_] := Gamma[Root[1 - # + #^2 - #^3 + #^4 & , k]]; RealDigits[ 1/(5*g[1]*g[2]*g[3]*g[4]) // Re, 10, 105] // First (* Jean-François Alcover, Feb 12 2013 *)
  • PARI
    exp(suminf(j=1, (1 - zeta(5*j))/j)) \\ Vaclav Kotesovec, Apr 27 2020

Formula

Equals product_{t=1..4} 1/Gamma(2-exp(2*Pi*i*t/5)), where i is the imaginary unit.
Equals exp(Sum_{j>=1} (1 - zeta(5*j))/j). - Vaclav Kotesovec, Apr 27 2020
Equals 1/(Gamma(2 + phi/2 - i*(5^(1/4) / (2*sqrt(phi)))) * Gamma(2 + phi/2 + i*(5^(1/4) / (2*sqrt(phi)))) * Gamma(2 - 1/(2*phi) - i*5^(1/4)*(sqrt(phi)/2)) * Gamma(2 - 1/(2*phi) + i*5^(1/4)*(sqrt(phi)/2))), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio and i is the imaginary unit. - Vaclav Kotesovec, Dec 15 2020
Showing 1-3 of 3 results.