cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145069 a(n) = n*(n^2 + 3*n + 5)/3.

Original entry on oeis.org

0, 3, 10, 23, 44, 75, 118, 175, 248, 339, 450, 583, 740, 923, 1134, 1375, 1648, 1955, 2298, 2679, 3100, 3563, 4070, 4623, 5224, 5875, 6578, 7335, 8148, 9019, 9950, 10943, 12000, 13123, 14314, 15575, 16908, 18315, 19798, 21359, 23000, 24723, 26530
Offset: 0

Views

Author

Keywords

Comments

Old name was: Partial sums of A002061, starting at n=2.
Number of floating point dot operations (multiplications and divisions) in the factorization of an (n+1) X (n+1) real matrix by Gaussian elimination as, e.g., implemented in LINPACK subroutines sgefa.f or dgefa.f. The number of multiplications alone is given by A007290. The number of additions is given by A000330. - Hugo Pfoertner, Mar 28 2018

Examples

			a(2) = a(1) + 2^2 + 2 + 1 = 3 + 4 + 2 + 1 = 10.
a(3) = a(2) + 3^2 + 3 + 1 = 10 + 9 + 3 + 1 = 23.
		

Crossrefs

Cf. A002061 (n^2 - n + 1).
Cf. A028387 (n + (n+1)^2).
Cf. A077415 (zero followed by partial sums of A028387, starting at n=1).
Cf. A007290.

Programs

  • Magma
    I:=[0, 3, 10, 23]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jun 30 2012
  • Maple
    A145069:=n->n*(n^2+3*n+5)/3: seq(A145069(n), n=0..100); # Wesley Ivan Hurt, Aug 21 2014
  • Mathematica
    lst={};s=0;Do[s+=n^2+n+1;AppendTo[lst,s-1],{n,0,5!}];lst
    CoefficientList[Series[x(3-2*x+x^2)/(1-x)^4,{x,0,40}],x] (* Vincenzo Librandi, Jun 30 2012 *)
    Table[n (n^2+3n+5)/3,{n,0,50}] (* or *) LinearRecurrence[{4,-6,4,-1},{0,3,10,23},50] (* Harvey P. Dale, Sep 10 2016 *)
  • PARI
    {a=0; for(n=1, 42, print1(a, ", "); a=a+n^2+n+1)} \\ adapted by Michel Marcus, Aug 23 2014
    

Formula

G.f.: x*(3-2*x+x^2)/(1-x)^4.
a(n) = Sum_{j=2..n+1} A002061(j).
a(n) = a(n-1) + n^2 + n + 1 for n > 0, with a(0) = 0.
a(n) = n*(n^2+3*n+5)/3. - Bruno Berselli, Apr 01 2011
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 30 2012
a(n) = Sum_{i=1..n} 3i+(n-i)^2. - Wesley Ivan Hurt, Aug 21 2014
a(n) = A007290(n+2) + n. - Hugo Pfoertner, Mar 28 2018

Extensions

Edited by Klaus Brockhaus, Oct 21 2008
G.f. adapted to the offset by Bruno Berselli, Apr 01 2011
Name, offset, and formulas changed by Wesley Ivan Hurt, Aug 21 2014