A145583
a(n) = number of numbers removed in the n-th step of Eratosthenes's sieve for 10^2.
Original entry on oeis.org
Artur Jasinski with assistance from Bob Hanlon (hanlonr(AT)cox.net), Oct 14 2008
Cf.
A006880,
A122121,
A145532,
A145533,
A145534,
A145535,
A145536,
A145537,
A145538,
A145539,
A145540,
A145583,
A145584,
A145585,
A145586,
A145587,
A145588,
A145589,
A145590,
A145591,
A145592.
-
f3[k_Integer?Positive, i_Integer?Positive] := Module[{f, m, r, p}, p = Transpose[{r = Range[2, i], Prime[r]}];f[x_] := Catch[Fold[If[Mod[x, #2[[2]]] == 0, Throw[m[ #2[[1]]] = m[ #2[[1]]] + 1], #1] &, If[Mod[x, 2] == 0, Throw[m[1] = m[1] + 1]], p]]; Table[m[n] = -1, {n, i}]; f /@ Range[k]; Table[m[n], {n, i}]];nn = 2; kk = PrimePi[Sqrt[10^nn]]; t3 = f3[10^nn, kk] (*Bob Hanlon (hanlonr(AT)cox.net) *)
A139172
a(n) = n!/2 - 1.
Original entry on oeis.org
0, 2, 11, 59, 359, 2519, 20159, 181439, 1814399, 19958399, 239500799, 3113510399, 43589145599, 653837183999, 10461394943999, 177843714047999, 3201186852863999, 60822550204415999, 1216451004088319999, 25545471085854719999, 562000363888803839999, 12926008369442488319999
Offset: 2
A227799
Number of composites removed in each step of the Sieve of Eratosthenes for 10^10.
Original entry on oeis.org
4999999999, 1666666666, 666666666, 380952380, 207792207, 159840159, 112828348, 95013343, 74358271, 56409724, 50950713, 41311372, 36273411, 33742734, 30153115, 26170720, 23065826, 21931483, 19640105, 18256894, 17506397, 15954848, 14993294, 13813524, 12531256
Offset: 1
a(1) = 10^10 \ 2 - 1.
a(2) = 10^10 \ 3 - 10^10 \ (2*3) - 1.
a(3) = 10^10 \ 5 - 10^10 \ (2*5) - 10^10 \ (3*5) + 10^10 \ (2*3*5) - 1.
a(4) = 10^10 \ 7 - 10^10 \ (2*7) - 10^10 \ (3*7) - 10^10 \ (5*7) + 10^10 \ (2*3*7) + 10^10 \ (2*5*7) + 10^10 \ (3*5*7) - 10^10 \ (2*3*5*7) - 1.
Cf.
A133228,
A145538,
A145539,
A145540,
A145583,
A227155,
A227797,
A227798,
A145532,
A145533,
A145534,
A145535,
A145536,
A145537.
A145584
a(n) = number of numbers removed in step n of Eratosthenes's sieve for 2^6.
Original entry on oeis.org
Artur Jasinski with assistance from Bob Hanlon (hanlonr(AT)cox.net), Oct 14 2008
-
f3[k_Integer?Positive, i_Integer?Positive] := Module[{f, m, r, p}, p = Transpose[{r = Range[2, i], Prime[r]}];f[x_] := Catch[Fold[If[Mod[x, #2[[2]]] == 0, Throw[m[ #2[[1]]] = m[ #2[[1]]] + 1], #1] &, If[Mod[x, 2] == 0, Throw[m[1] = m[1] + 1]], p]]; Table[m[n] = -1, {n, i}]; f /@ Range[k]; Table[m[n], {n, i}]];nn = 6; kk = PrimePi[Sqrt[2^nn]]; t3 = f3[2^nn, kk] (* Bob Hanlon (hanlonr(AT)cox.net) *)
Showing 1-4 of 4 results.
Comments