cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A080149 Numbers k such that k^2 + 1 and k^2 + 3 are both prime.

Original entry on oeis.org

2, 4, 10, 14, 74, 94, 130, 134, 146, 160, 230, 256, 326, 340, 350, 406, 430, 440, 470, 584, 634, 686, 700, 704, 784, 860, 920, 986, 1054, 1070, 1156, 1210, 1324, 1340, 1354, 1366, 1394, 1420, 1456, 1460, 1564, 1700, 1784, 1816, 1876, 2006, 2080, 2096, 2174
Offset: 1

Views

Author

T. D. Noe, Jan 30 2003

Keywords

Comments

Hardy and Littlewood conjecture that this sequence is infinite. This sequence is the intersection of A005574 (k such that k^2 + 1 is prime) and A049422 (k such that k^2 + 3 is prime).
From Jacques Tramu, Sep 10 2018: (Start)
a(10000) = 2473624; C = 2.91596513
a(100000) = 35866246; C = 2.70591741
a(1000000) = 483764726; C = 2.53454683
a(2000000) = 1049178316; C = 2.49209641
a(3000000) = 1647417724; C = 2.46880647
a(4000000) = 2267125384; C = 2.45259161
a(5000000) = 2903162576; C = 2.44036006
a(6000000) = 3551848640; C = 2.43024082
a(7000000) = 4212006124; C = 2.42214552
a(8000000) = 4881390700; C = 2.41510010
a(9000000) = 5559542740; C = 2.40915933
a(10000000) = 6245573750; C = 2.40405768
a(20000000) = 13393786900; C = 2.36959294
a(30000000) = 20908970800; C = 2.35131696
a(40000000) = 28659267134; C = 2.33835867
a(50000000) = 36590858294; C = 2.32865934
C is the quotient a(n) / (n * log(n) * log(n)). (End)

Examples

			10 is in this sequence because 101 and 103 are both prime.
		

References

  • P. Ribenboim, "The New Book of Prime Number Records," Springer-Verlag, 1996, p. 408.

Crossrefs

Programs

  • Mathematica
    lst={}; Do[If[PrimeQ[m^2+1]&&PrimeQ[m^2+3], AppendTo[lst, m]], {m, 3000}]; lst
    okQ[n_]:=Module[{n2=n^2},PrimeQ[n2+1]&&PrimeQ[n2+3]]; Select[Range[2200], okQ]  (* Harvey P. Dale, Apr 21 2011 *)
    Select[Range[2500],AllTrue[#^2+{1,3},PrimeQ]&] (* Harvey P. Dale, Sep 07 2023 *)
  • PARI
    isA080149(n) = isprime(n^2+1) && isprime(n^2+3) \\ Michael B. Porter, Mar 22 2010

Formula

Conjecture: a(n) is asymptotic to c*n*log(n)^2 with c around 2.9... - Benoit Cloitre, Apr 16 2004

A200992 Primes p of form n^2 + 1 such that p+2 and p+6 are also prime.

Original entry on oeis.org

5, 17, 101, 5477, 21317, 65537, 193601, 220901, 341057, 846401, 1144901, 1336337, 1752977, 1943237, 2016401, 4326401, 6100901, 6760001, 11062277, 14032517, 23001617, 35952017, 41731601, 51265601, 55741157, 79103237, 83978897, 91278917, 92083217, 110040101
Offset: 1

Views

Author

Zak Seidov, Nov 25 2011

Keywords

Comments

Subsequence of A145824 which itself is subsequence of A002496.

Crossrefs

Programs

  • Mathematica
    Select[Range[11000]^2+1,AllTrue[#+{0,2,6},PrimeQ]&] (* Harvey P. Dale, Jul 21 2024 *)

A358342 Lesser of twin primes p such that sigma((p-1)/2) + tau((p-1)/2) is a prime.

Original entry on oeis.org

3, 5, 17, 65537, 1927561217, 6015902625062501, 12370388895062501, 835920078368222501, 6448645485213008897, 50973659693056000001, 54332889713542767617, 64304984013657011717, 112112769248058062501, 147337258721536000001
Offset: 1

Views

Author

Jaroslav Krizek, Nov 10 2022

Keywords

Comments

Lesser of twin primes p such that A000203((p-1)/2) + A000005((p-1)/2) is a prime q.
The first 4 terms are Fermat primes from A019434.
Corresponding values of primes q: 2, 5, 19, 65551, 2248681529, ...
Subsequence of A272060 and A272061.
Lesser of twin primes of the form 2*m+1 with m a term of A064205.
There are no other terms <= 10^14.
All the terms above 3 are in A145824. - Amiram Eldar, Jan 05 2023

Examples

			17 and 19 are twin primes; sigma((17-1)/2) + tau((17-1)/2) = sigma(8) + tau(8) = 15 + 4 = 19; 19 is prime, so 17 is in the sequence.
		

Crossrefs

Intersection of A001359 and A272061.
Cf. A000005 (tau), A000203 (sigma), A019434, A064205, A145824, A272060.

Programs

  • Magma
    [n: n in [3..10^7] | IsPrime(n) and IsPrime(n+2) and IsPrime(&+Divisors((n-1) div 2) + #Divisors((n-1) div 2))]
    
  • Mathematica
    Join[{3}, Select[4*Range[25000]^2 + 1, PrimeQ[#] && PrimeQ[# + 2] && PrimeQ[DivisorSigma[1, (# - 1)/2] + DivisorSigma[0, (# - 1)/2]] &]]
    (* or *)
    A272061 = Cases[Import["https://oeis.org/A272061/b272061.txt", "Table"], {, }][[;; , 2]]; Select[A272061, PrimeQ[# + 2] &] (* Amiram Eldar, Jan 05 2023 *)
  • PARI
    isok(p) = if (isprime(p) && isprime(p+2), my(f=factor((p-1)/2)); isprime(sigma(f)+numdiv(f))); \\ Michel Marcus, Nov 23 2022
Showing 1-3 of 3 results.