cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A085001 a(n) = (3*n+1)*(3*n+4).

Original entry on oeis.org

4, 28, 70, 130, 208, 304, 418, 550, 700, 868, 1054, 1258, 1480, 1720, 1978, 2254, 2548, 2860, 3190, 3538, 3904, 4288, 4690, 5110, 5548, 6004, 6478, 6970, 7480, 8008, 8554, 9118, 9700, 10300, 10918, 11554, 12208, 12880, 13570, 14278, 15004, 15748, 16510, 17290, 18088
Offset: 0

Views

Author

Gary W. Adamson, Jun 17 2003

Keywords

References

  • L. B. W. Jolley, "Summation of Series", Dover Publications, 1961, p. 38.

Crossrefs

Cf. A145910.

Programs

  • Magma
    [(3*n+1)*(3*n+4): n in [0..50]]; // Vincenzo Librandi, Jul 08 2012
    
  • Mathematica
    CoefficientList[Series[2*(2+8x-x^2)/(1-x)^3,{x,0,50}],x] (* Vincenzo Librandi, Jul 08 2012 *)
    Table[(3n+1)(3n+4),{n,0,40}] (* or *) LinearRecurrence[{3,-3,1},{4,28,70},50] (* Harvey P. Dale, Apr 07 2019 *)
  • PARI
    a(n)=(3*n+1)*(3*n+4) \\ Charles R Greathouse IV, Jun 17 2017

Formula

Sum_{k=0..n} 3/a(k) = 3*(n+1)/(3*n+4). [Corrected by Gary Detlefs, Mar 14 2018]
Sum_{k>=0} 3/a(k) = 1.
From Gary W. Adamson, Jan 03 2007: (Start)
Sum_{k>=0} 1/a(k) = 1/3.
Sum_{k=0..n} 1/a(k) = (n+1)/(3*n+4) [Jolley]. (End) [Corrected by Gary Detlefs, Mar 14 2018]
G.f.: 2*(2+8*x-x^2)/(1-x)^3. - R. J. Mathar, Sep 17 2008
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Jul 08 2012
Sum_{n>=0} (-1)^n/a(n) = 2*Pi/(9*sqrt(3)) + 2*log(2)/9 - 1/3. - Amiram Eldar, Oct 08 2023
From Elmo R. Oliveira, Nov 15 2024: (Start)
E.g.f.: exp(x)*(4 + 24*x + 9*x^2).
a(n) = 2*A145910(n). (End)

Extensions

Edited by Don Reble, Nov 13 2005

A178977 a(n) = (3*n+2)*(3*n+5)/2.

Original entry on oeis.org

5, 20, 44, 77, 119, 170, 230, 299, 377, 464, 560, 665, 779, 902, 1034, 1175, 1325, 1484, 1652, 1829, 2015, 2210, 2414, 2627, 2849, 3080, 3320, 3569, 3827, 4094, 4370, 4655, 4949, 5252, 5564, 5885, 6215, 6554, 6902, 7259, 7625, 8000, 8384, 8777, 9179, 9590, 10010
Offset: 0

Views

Author

Paul Curtz, Jan 02 2011

Keywords

Comments

Companion to A145910.

Crossrefs

Programs

Formula

a(n) = a(n-1) + 6 + 9*n.
a(n) = A178971(3*n+2).
a(n) = A145910(n) + 3 + 3*n = A145910(n) + A008585(n+1).
a(n) = A168233(n+1)*A168300(n+1).
G.f.: (-5-5*x+x^2)/(x-1)^3. [Adapted to the offset by Bruno Berselli, Apr 14 2011]
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Apr 19 2013
From Amiram Eldar, Mar 10 2022: (Start)
Sum_{n>=0} 1/a(n) = 1/3.
Sum_{n>=0} (-1)^n/a(n) = 4*Pi/(9*sqrt(3)) - 1/3 - 4*log(2)/9. (End)
From Elmo R. Oliveira, Oct 30 2024: (Start)
E.g.f.: exp(x)*exp(x)*(5 + 15*x + 9*x^2/2).
a(n) = A016789(n)*A016789(n+1)/2. (End)

A178978 a(n) = A144448(n+1)/8.

Original entry on oeis.org

0, 2, 5, 1, 14, 20, 1, 35, 44, 2, 65, 77, 10, 104, 119, 5, 152, 170, 7, 209, 230, 28, 275, 299, 4, 350, 377, 5, 434, 464, 55, 527, 560, 22, 629, 665, 26, 740, 779, 91, 860, 902, 35, 989, 1034, 40, 1127, 1175, 136, 1274, 1325, 17
Offset: 0

Views

Author

Paul Curtz, Jan 02 2011

Keywords

Comments

Differs from A178971 for indices n > 23.

Crossrefs

Programs

Formula

Trisections:
a(3*n) = A145911(n);
a(3*n+1) = A145910(n);
a(3*n+2) = A178977(n).
a(n) = 3*a(n-27) - 3*a(n-54) + a(n-81). - G. C. Greubel, Mar 06 2022
Showing 1-3 of 3 results.