A047393 Numbers that are congruent to {0, 1} mod 8.
0, 1, 8, 9, 16, 17, 24, 25, 32, 33, 40, 41, 48, 49, 56, 57, 64, 65, 72, 73, 80, 81, 88, 89, 96, 97, 104, 105, 112, 113, 120, 121, 128, 129, 136, 137, 144, 145, 152, 153, 160, 161, 168, 169, 176, 177, 184, 185, 192, 193, 200, 201, 208, 209, 216, 217, 224, 225, 232
Offset: 1
Links
- David Lovler, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
Maple
a[0]:=0:a[1]:=1:for n from 2 to 100 do a[n]:=a[n-2]+8 od: seq(a[n], n=0..58); # Zerinvary Lajos, Mar 16 2008
-
Mathematica
Riffle[#, # + 1] & [Range[0, 400, 8]] (* Paolo Xausa, Mar 11 2025 *)
-
PARI
forstep(n=0,200,[1,7],print1(n", ")) \\ Charles R Greathouse IV, Oct 17 2011
-
PARI
a(n) = 4*n - 11/2 - 3*(-1)^n/2; \\ David Lovler, Jul 25 2022
-
Python
def A047393(n): return n-1<<2 if n&1 else (n<<2)-7 # Chai Wah Wu, Mar 11 2025
Formula
a(n) = 8*n - a(n-1) - 15 for n>1, a(1)=0. - Vincenzo Librandi, Aug 05 2010
From R. J. Mathar, Oct 08 2011: (Start)
a(n) = 4*n - 11/2 - 3*(-1)^n/2.
G.f.: x^2*(1+7*x) / ( (1+x)*(x-1)^2 ). (End)
Sum_{n>=2} (-1)^n/a(n) = (sqrt(2)+1)*Pi/16 + log(2)/2 + sqrt(2)*log(sqrt(2)+1)/8. - Amiram Eldar, Dec 18 2021
E.g.f.: ((8*x - 3)*exp(x) + 3*exp(-x))/2 = 4*x*exp(x) - 3*sinh(x). - David Lovler, Aug 02 2022
Extensions
More terms from James Sellers, Jun 20 2000
Comments