cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A274979 Integers of the form m*(m + 7)/8.

Original entry on oeis.org

0, 1, 15, 18, 46, 51, 93, 100, 156, 165, 235, 246, 330, 343, 441, 456, 568, 585, 711, 730, 870, 891, 1045, 1068, 1236, 1261, 1443, 1470, 1666, 1695, 1905, 1936, 2160, 2193, 2431, 2466, 2718, 2755, 3021, 3060, 3340, 3381, 3675, 3718, 4026, 4071, 4393, 4440, 4776, 4825
Offset: 1

Views

Author

Bruno Berselli, Jul 15 2016

Keywords

Comments

Nonnegative values of m are listed in A047393.
Also, numbers h such that 32*h + 49 is a square.
Equivalently, numbers of the form i*(8*i + 7) with i = 0, -1, 1, -2, 2, -3, 3, ...
Infinitely many squares belong to this sequence.
The first bisection is A139278, and 0 followed by the second bisection gives A051870.
Generalized 18-gonal (or octadecagonal) numbers (see the third comment). - Omar E. Pol, Jun 06 2018
Partial sums of A317314. - Omar E. Pol, Jul 28 2018
Exponents in expansion of Product_{n >= 1} (1 + x^(16*n-15))*(1 + x^(16*n-1))*(1 - x^(16*n)) = 1 + x + x^15 + x^18 + x^46 + .... - Peter Bala, Dec 10 2020
Generalized k-gonal numbers are second k-gonal numbers and positive terms of k-gonal numbers interleaved, k >= 5. They are also the partial sums of the sequence formed by the multiples of (k - 4) and the odd numbers (A005408) interleaved, k >= 5. In this case k = 18. - Omar E. Pol, Apr 25 2021

Examples

			100 is in the sequence because 100 = 25*(25+7)/8 or also 100 = 4*(8*4-7).
From _Omar E. Pol_, Apr 24 2021: (Start)
Illustration of initial terms as vertices of a rectangular spiral:
        46_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _18
         |                                                       |
         |                           0                           |
         |                           |_ _ _ _ _ _ _ _ _ _ _ _ _ _|
         |                           1                           15
         |
        51
More generally, all generalized k-gonal numbers can be represented with this kind of spirals, k >= 5. In this case  k = 18. (End)
		

Crossrefs

Cf. sequences of the form m*(m+k)/(k+1) listed in A274978.
Cf. similar sequences listed in A299645.
Cf. A317314.
Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), this sequence (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).

Programs

  • Magma
    [t: m in [0..200] | IsIntegral(t) where t is m*(m+7)/8];
    
  • Mathematica
    Select[m = Range[0, 200]; m (m + 7)/8, IntegerQ] (* Jean-François Alcover, Jul 21 2016 *)
    Select[Table[(m(m+7))/8,{m,0,200}],IntegerQ] (* or *) LinearRecurrence[ {1,2,-2,-1,1},{0,1,15,18,46},50] (* Harvey P. Dale, May 07 2019 *)
  • Python
    def A274979(n): return (n>>1)*((n<<2)+(3 if n&1 else -7)) # Chai Wah Wu, Mar 11 2025
  • Sage
    def A274979_list(len):
        h = lambda m: m*(m+7)/8
        return [h(m) for m in (0..len) if h(m) in ZZ]
    print(A274979_list(199)) # Peter Luschny, Jul 18 2016
    

Formula

O.g.f.: x^2*(1 + 14*x + x^2)/((1 + x)^2*(1 - x)^3).
E.g.f.: (3*(2*x + 1)*exp(-x) + (8*x^2 - 3)*exp(x))/4.
a(n) = (8*(n-1)*n - 3*(2*n-1)*(-1)^n - 3)/4.
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n >= 6. - Wesley Ivan Hurt, Dec 18 2020
From Amiram Eldar, Feb 28 2022: (Start)
Sum_{n>=2} 1/a(n) = (8 + 7*(sqrt(2)+1)*Pi)/49.
Sum_{n>=2} (-1)^n/a(n) = 8*log(2)/7 + 2*sqrt(2)*log(sqrt(2)+1)/7 - 8/49. (End)
a(n) = (n-1)*(4*n+3)/2 if n is odd and a(n) = n*(4*n-7)/2 if n is even. - Chai Wah Wu, Mar 11 2025

A139591 A139275(n) followed by 18-gonal number A051870(n+1).

Original entry on oeis.org

0, 1, 9, 18, 34, 51, 75, 100, 132, 165, 205, 246, 294, 343, 399, 456, 520, 585, 657, 730, 810, 891, 979, 1068, 1164, 1261, 1365, 1470, 1582, 1695, 1815, 1936, 2064, 2193, 2329, 2466, 2610, 2755, 2907, 3060, 3220, 3381, 3549, 3718, 3894, 4071, 4255, 4440, 4632
Offset: 0

Views

Author

Omar E. Pol, May 03 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 9, ... and the line from 1, in the direction 1, 18, ..., in the square spiral whose vertices are the triangular numbers A000217.

Examples

			Array begins:
   0,   1;
   9,  18;
  34,  51;
  75, 100;
  ...
		

Crossrefs

Formula

Array read by rows: row n gives 8*n^2 + n, 8*(n+1)^2 - 7*(n+1).
G.f.: -x*(7*x+1)/((x-1)^3*(x+1)). - Colin Barker, Oct 16 2012
a(n) = 2*n^2 + (7/2)*n + (3/4)*((-1)^n-1). - Sean A. Irvine, Jul 14 2022

A151972 Numbers that are congruent to {0, 1, 6, 10} mod 15.

Original entry on oeis.org

0, 1, 6, 10, 15, 16, 21, 25, 30, 31, 36, 40, 45, 46, 51, 55, 60, 61, 66, 70, 75, 76, 81, 85, 90, 91, 96, 100, 105, 106, 111, 115, 120, 121, 126, 130, 135, 136, 141, 145, 150, 151, 156, 160, 165, 166, 171, 175, 180, 181, 186, 190, 195, 196, 201, 205, 210, 211, 216, 220, 225
Offset: 1

Views

Author

N. J. A. Sloane, Aug 23 2009

Keywords

Comments

Also, numbers n such that n^2 - n is divisible by 15.
Also, numbers n such that n^2 - n is divisible by 30.

Crossrefs

For m^2 == m (mod n), see: n=2: A001477, n=3: A032766, n=4: A042948, n=5: A008851, n=6: A032766, n=7: A047274, n=8: A047393, n=9: A090570, n=10: A008851, n=11: A112651, n=12: A112652, n=13: A112653, n=14: A047274, n=15: A151972, n=16: A151977, n=17: A151978, n=18: A090570, n=19: A151979, n=20: A151980, n=21: A151971, n=22, A112651, n=24: A151973, n=26: A112653, n=30: A151972, n=32: A151983, n=34: A151978, n=38: A151979, n=42: A151971, n=48: A151981, n=64: A151984.
Cf. A215202.

Programs

Formula

G.f.: x^2*(1+5*x+4*x^2+5*x^3) / ( (1+x)*(1+x^2)*(x-1)^2 ). - R. J. Mathar, Oct 25 2011
From Wesley Ivan Hurt, Jun 07 2016: (Start)
a(n) = (30*n-41-5*i^(2*n)+(3+3*i)*i^(-n)+(3-3*i)*i^n)/8 where i=sqrt(-1).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5. (End)
E.g.f.: (20 + (15*x - 23)*cosh(x) + 3*(sin(x) + cos(x) + (5*x - 6)*sinh(x)))/4. - Ilya Gutkovskiy, Jun 07 2016

Extensions

This is a merge of two identical sequences, A151972 and A151975.

A151971 Numbers n such that n^2 - n is divisible by 21.

Original entry on oeis.org

0, 1, 7, 15, 21, 22, 28, 36, 42, 43, 49, 57, 63, 64, 70, 78, 84, 85, 91, 99, 105, 106, 112, 120, 126, 127, 133, 141, 147, 148, 154, 162, 168, 169, 175, 183, 189, 190, 196, 204, 210, 211, 217, 225, 231, 232, 238, 246, 252, 253, 259, 267, 273, 274, 280, 288, 294, 295, 301, 309
Offset: 1

Views

Author

N. J. A. Sloane, Aug 23 2009

Keywords

Comments

Equivalently, numbers that are congruent to {0, 1, 7, 15} mod 21. - Bruno Berselli, Aug 06 2012

Crossrefs

For m^2 == m (mod n), see: n=2: A001477; n=3: A032766; n=4: A042948; n=5: A008851; n=6: A032766; n=7: A047274; n=8: A047393; n=9: A090570; n=10: A008851; n=11: A112651; n=12: A112652; n=13:A112653; n=14: A047274; n=15: A151972; n=16: A151977; n=17: A151978; n=18: A090570; n=19: A151979; n=20: A151980; n=21: A151971; n=22: A112651; n=24: A151973; n=26: A112653; n=30: A151972; n=32: A151983; n=34: A151978; n=38: A151979; n=42: A151971; n=48: A151981; n=64: A151984.
Cf. A215202.

Programs

  • Magma
    [n: n in [0..309] | IsZero((n^2-n) mod 21)]; // Bruno Berselli, Aug 06 2012
    
  • Maple
    A151971:=n->(42*n+14*I^((n-1)*n)-3*I^(2*n)-3)/8-7: seq(A151971(n), n=1..100); # Wesley Ivan Hurt, Jun 07 2016
  • Mathematica
    Select[Range[0,400], Divisible[#^2-#,21]&] (* Harvey P. Dale, Jun 04 2012 *)
  • Maxima
    makelist((42*n+14*%i^((n-1)*n)-3*(-1)^n-3)/8-7, n, 1, 60); /* Bruno Berselli, Aug 06 2012 */

Formula

From Bruno Berselli, Aug 06 2012: (Start)
G.f.: x^2*(1+6*x+8*x^2+6*x^3)/((1+x)*(1-x)^2*(1+x^2)).
a(n) = (42*n +14*i^((n-1)*n) -3*(-1)^n -3)/8 -7, where i=sqrt(-1). (End)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5. - Wesley Ivan Hurt, Jun 07 2016
E.g.f.: (24 + (21*x - 31)*cosh(x) + 7*(sin(x) + cos(x) + (3*x - 4)*sinh(x)))/4. - Ilya Gutkovskiy, Jun 07 2016

A215202 Irregular triangle in which n-th row gives m in 1, ..., n-1 such that m^2 == m (mod n).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 4, 1, 1, 1, 1, 5, 6, 1, 1, 4, 9, 1, 1, 7, 8, 1, 6, 10, 1, 1, 1, 9, 10, 1, 1, 5, 16, 1, 7, 15, 1, 11, 12, 1, 1, 9, 16, 1, 1, 13, 14, 1, 1, 8, 21, 1, 1, 6, 10, 15, 16, 21, 25, 1, 1, 1, 12, 22, 1, 17, 18, 1, 15, 21, 1, 9, 28, 1, 1, 19, 20, 1, 13
Offset: 2

Views

Author

Eric M. Schmidt, Aug 05 2012

Keywords

Comments

The n-th row has length A034444(n) - 1.
If m appears in row n, then gcd(n,m) appears in the n-th row of A077610. Moreover, if m', distinct from m, also appears in row n, then gcd(n, m) does not equal gcd(n, m').
For odd n and any integer m, m^2 == m (mod n) iff m^2 == m (mod 2n).
Let P(1)={1} and for integers x > 1, let P(x) be the set of distinct prime divisors of x. We can define an equivalence relation ~ on the set of elements in the ring (Z_n, +mod n,*mod n): for all a,b in Z_n (where a,b are the least nonnegative residues modulo n) a ~ b iff P(gcd(a,n)) intersect P(n) is equal to P(gcd(b,n)) intersect P(n). If we include 0 in each row then these elements can represent the equivalence classes. They form a commutative monoid. - Geoffrey Critzer, Feb 13 2016

Examples

			Triangle begins:
1;
1;
1;
1;
1, 3, 4;
1;
1;
1;
1, 5, 6;
1;
1, 4, 9;
1;
1, 7, 8;
1, 6, 10;
1;
1;
1, 9, 10; etc.  - _Bruno Berselli_, Aug 06 2012
		

Crossrefs

For m^2 == m (mod n), see: n=2: A001477; n=3: A032766; n=4: A042948; n=5: A008851; n=6: A032766; n=7: A047274; n=8: A047393; n=9: A090570; n=10: A008851; n=11: A112651; n=12: A112652; n=13: A112653; n=14: A047274; n=15: A151972; n=16: A151977; n=17: A151978; n=18: A090570; n=19: A151979; n=20: A151980; n=21: A151971; n=22: A112651; n=24: A151973; n=26: A112653; n=30: A151972; n=32: A151983; n=34: A151978; n=38: A151979; n=42: A151971; n=48: A151981; n=64: A151984; n=100: A008852; n=1000: A008853.

Programs

  • Magma
    [m: m in [1..n-1], n in [2..40] | m^2 mod n eq m]; // Bruno Berselli, Aug 06 2012
  • Mathematica
    Table[Select[Range[n], Mod[#^2, n] == # &], {n, 2, 30}] // Grid (* Geoffrey Critzer, May 26 2015 *)
  • Sage
    def A215202(n) : return [m for m in range(1, n) if m^2 % n == m];
    

A132728 Triangle T(n, k) = 4 - 3*(-1)^k, read by rows.

Original entry on oeis.org

1, 1, 7, 1, 7, 1, 1, 7, 1, 7, 1, 7, 1, 7, 1, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1
Offset: 0

Views

Author

Roger L. Bagula, Nov 17 2007

Keywords

Examples

			Triangle begins as:
  1;
  1, 7;
  1, 7, 1;
  1, 7, 1, 7;
  1, 7, 1, 7, 1;
  1, 7, 1, 7, 1, 7;
  1, 7, 1, 7, 1, 7, 1;
  1, 7, 1, 7, 1, 7, 1, 7;
  1, 7, 1, 7, 1, 7, 1, 7, 1;
  1, 7, 1, 7, 1, 7, 1, 7, 1, 7;
  1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1;
		

Crossrefs

Programs

  • Magma
    [4 -3*(-1)^k: k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 14 2021
  • Mathematica
    Table[PadRight[{},n,{1,7}],{n,20}]//Flatten (* Harvey P. Dale, Aug 02 2019 *)
    Table[4 -3*(-1)^k, {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 14 2021 *)
  • Sage
    flatten([[4 -3*(-1)^k for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 14 2021
    

Formula

From G. C. Greubel, Feb 14 2021: (Start)
T(n, k) = 4 - 3*(-1)^k.
Sum_{k=0..n} T(n, k) = (8*n + 5 - 3*(-1)^n)/2 = A047393(n+2). (End)
Bivariate g.f.: (1 + 7*x*y)/((1 - x)*(1 - x*y)*(1 + x*y)). - J. Douglas Morrison, Jul 19 2021

Extensions

Edited and corrected by Joerg Arndt, Dec 26 2018
Offset and title changed by G. C. Greubel, Feb 14 2021

A241263 Successive break values in reaching a maximum break of 147 in snooker.

Original entry on oeis.org

1, 8, 9, 16, 17, 24, 25, 32, 33, 40, 41, 48, 49, 56, 57, 64, 65, 72, 73, 80, 81, 88, 89, 96, 97, 104, 105, 112, 113, 120, 122, 125, 129, 134, 140, 147
Offset: 1

Views

Author

Jon Perry, Apr 18 2014

Keywords

Comments

In Snooker there are 15 reds (1pt each), a yellow (2pts), green (3pts), brown (4pts), blue (5pts), pink (6pts) and a black ball (7pts). After potting each red with a color (a black in this case), each color must be potted in order.
It is possible to score a break of 155 with a free ball.

References

  • Ronnie O'Sullivan, "Unbreakable", Seven Dials, 2022.

Crossrefs

Cf. A356948 (successive scores).

Programs

  • JavaScript
    s=0;
    for (i=0;i<15;i++) {
    s+=1;
    document.write(s+", ");
    s+=7;
    document.write(s+", ");
    }
    for (i=2;i<8;i++) {
    s+=i;
    document.write(s+", ");
    }

Extensions

O'Sullivan reference and links added by N. J. A. Sloane, Feb 12 2024
Showing 1-7 of 7 results.