cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A111592 Admirable numbers. A number n is admirable if there exists a proper divisor d' of n such that sigma(n)-2d'=2n, where sigma(n) is the sum of all divisors of n.

Original entry on oeis.org

12, 20, 24, 30, 40, 42, 54, 56, 66, 70, 78, 84, 88, 102, 104, 114, 120, 138, 140, 174, 186, 222, 224, 234, 246, 258, 270, 282, 308, 318, 354, 364, 366, 368, 402, 426, 438, 464, 474, 476, 498, 532, 534, 582, 606, 618, 642, 644, 650, 654, 672, 678, 762, 786, 812
Offset: 1

Views

Author

Jason Earls, Aug 09 2005

Keywords

Comments

All admirable numbers are abundant.
If 2^n-2^k-1 is an odd prime then m=2^(n-1)*(2^n-2^k-1) is in the sequence because 2^k is one of the proper divisors of m and sigma(m)-2m=(2^n-1)*(2^n-2^k)-2^n*(2^n-2^k-1)=2^k hence m=(sigma(m)-m)-2^k, namely m is an Admirable number. This is one of the results of the following theorem that I have found. Theorem: If 2^n-j-1 is an odd prime and m=2^(n-1)*(2^n-j-1) then sigma(m)-2m=j. The case j=0 is well known. - Farideh Firoozbakht, Jan 28 2006
In particular, these numbers have abundancy 2 to 3: 2 < sigma(n)/n <= 3. - Charles R Greathouse IV, Jan 30 2014
Subsequence of A083207. - Ivan N. Ianakiev, Mar 20 2017
The concept of admirable numbers was developed by educator Jerome Michael Sachs (1914-2012) for a television in-service training course in mathematics for elementary school teachers. - Amiram Eldar, Aug 22 2018
Odd terms are listed in A109729. For abundant nonsquares, it is equivalent to say sigma(n)/2 - n divides n. For squares, sigma(n)/2 - n is half-integer, but n could still be an integer multiple. This first occurs for n = m^2 with even m = 2^k*(2^(2*k+1)-1), k = 1, 2, 3, 6, ... (A146768), and odd m = 13167. - M. F. Hasler, Jan 26 2020

Examples

			12 = 1+3+4+6-2, 20 = 2+4+5+10-1, etc.
		

Crossrefs

Subsequence of A005101 (abundant numbers).
Cf. A000396 (perfect numbers), A005100 (deficient numbers), A000203 (sigma), A061645.
Cf. A109729 (odd admirable numbers).

Programs

  • Maple
    with(numtheory); isadmirable := proc(n) local b, d, S; b:=false; S:=divisors(n) minus {n}; for d in S do if sigma(n)-2*d=2*n then b:=true; break fi od; return b; end: select(proc(z) isadmirable(z) end, [$1..1000]); # Walter Kehowski, Aug 12 2005
  • Mathematica
    fQ[n_] := Block[{d = Most[Divisors[n]], k = 1}, l = Length[d]; s = Plus @@ d; While[k < l && s - 2d[[k]] > n, k++ ]; If[k > l || s != n + 2d[[k]], False, True]]; Select[ Range[821], fQ[ # ] &] (* Robert G. Wilson v, Aug 13 2005 *)
    Select[Range[812],MemberQ[Most[Divisors[#]],(DivisorSigma[1,#]-2*#)/2]&] (* Ivan N. Ianakiev, Mar 23 2017 *)
  • PARI
    for(n=1,10^3,ap=sigma(n)-2*n;if(ap>0 && (ap%2)==0,d=ap/2;if(d!=n && (n%d)==0, print1(n",")))) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Mar 30 2008
    
  • PARI
    is(n)=if(issquare(n)||issquare(n/2),0,my(d=sigma(n)/2-n); d>0 && d!=n && n%d==0) \\ Charles R Greathouse IV, Jun 21 2011

Extensions

Better definition from Walter Kehowski, Aug 12 2005

A119591 Least k such that 2*n^k - 1 is prime.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 2, 1, 1, 2, 1, 2, 4, 1, 1, 2, 2, 1, 10, 1, 1, 6, 1, 2, 6, 1, 2, 136, 1, 1, 6, 6, 1, 6, 1, 1, 2, 2, 1, 2, 1, 2, 4, 1, 2, 4, 4, 1, 2, 1, 1, 44, 1, 1, 2, 1, 3, 2, 5, 3, 2, 2, 1, 4, 1, 768, 4, 1, 1, 52, 34, 2, 132, 1, 1, 14, 7, 1, 2, 2, 1, 8, 1, 2, 10, 1, 24, 60, 1, 1, 2, 3, 5, 2, 1, 1, 2, 1, 1
Offset: 2

Views

Author

Pierre CAMI, Jun 01 2006

Keywords

Comments

From Eric Chen, Jun 01 2015: (Start)
Conjecture: a(n) is defined for all n.
a(303) > 10000, a(304)..a(360) = {1, 2, 11, 1, 990, 1, 1, 2, 2, 4, 74, 5, 1, 10, 6, 6, 4, 1, 1, 2, 1, 9, 12, 1, 80, 2, 1, 1, 2, 14, 3, 2, 3, 1, 12, 1, 60, 36, 1, 8, 4, 34, 1, 522, 3, 15, 14, 1, 6, 2, 3, 1, 4, 5, 4, 10, 1}.
a(n) = 1 if and only if n is in A006254. (End)
From Eric Chen, Sep 16 2021: (Start)
Now a(303) is known to be 40174, also other terms > 10000: a(383) = 20956, a(515) = 58466, a(522) = 62288, a(578) = 129468, a(581) > 400000, a(590) = 15526, a(647) = 21576, a(662) = 16590, a(698) = 127558, a(704) = 62034, see the a-file and the references.
a(n) = 2 if and only if n is in A066049 but not in A006254.
a(n) = 3 if and only if n is in A214289 but not in A006254 or A066049. (End)

Crossrefs

Numbers r such that 2*k^r-1 is prime: A090748 (k=2), A003307 (k=3), A146768 (k=4), A120375 (k=5), A057472 (k=6), A002959 (k=7), ... (k=8), ... (k=9), A002957 (k=10), A120378 (k=11), ... (k=12), A174153 (k=13), A273517 (k=14), ... (k=15), ... (k=16), A193177 (k=17), A002958 (k=25).

Programs

  • Mathematica
    f[n_] := Block[{k = 0}, While[ ! PrimeQ[2*n^k - 1], k++ ]; k ]; Table[f[n], {n, 2, 106}] (* Ray Chandler, Jun 08 2006 *)
  • PARI
    a(n) = for(k=1, 2^24, if(ispseudoprime(2*n^k-1), return(k))) \\ Eric Chen, Jun 01 2015

Formula

From Eric Chen, Sep 16 2021: (Start)
a(6*n) = A098873(n).
a(2^n) = A279095(n).
a(A006254(n)) = 1.
a(A066049(n)) <= 2.
a(A214289(n)) <= 3. (End)

Extensions

Corrected and extended by Ray Chandler, Jun 08 2006

A138576 Numbers k such that 2^(2*k - 1) - 1 is prime.

Original entry on oeis.org

2, 3, 4, 7, 9, 10, 16, 31, 45, 54, 64, 261, 304, 640, 1102, 1141, 1609, 2127, 2212, 4845, 4971, 5607, 9969, 10851, 11605, 22249, 43122, 55252, 66025, 108046, 378420, 429717, 628894, 699135, 1488111, 1510689, 3486297, 6733459, 10498006, 12018292, 12982476, 15201229, 16291329, 18578334
Offset: 1

Views

Author

Keywords

Examples

			2^(2*2 - 1) - 1 = 7;
2^(2*3 - 1) - 1 = 31;
2^(2*4 - 1) - 1 = 127.
		

Crossrefs

Programs

Formula

a(n) = (A000043(n+1) + 1)/2. - Charles R Greathouse IV, Aug 30 2010
a(n) = A146768(n) + 1. - César Aguilera, May 27 2020

Extensions

More terms from Charles R Greathouse IV, Aug 30 2010
More terms from Mario Fernando Garcia Rivera, Jul 18 2022

A139481 a(n) = A139480(n)/2.

Original entry on oeis.org

0, 1, 2, 5, 7, 8, 14, 29, 43, 52, 62, 259, 302, 638, 1100, 1139, 1607, 2125, 2210, 4843, 4969, 5605, 9967, 10849, 11603, 22247, 43120, 55250, 66023, 108044, 378418, 429715, 628892, 699133, 1488109, 1510687, 3486295, 6733457, 10498004, 12018290
Offset: 2

Views

Author

Artur Jasinski, Apr 22 2008

Keywords

Crossrefs

Programs

  • Mathematica
    (MersennePrimeExponent[Range[2, 48]] - 3)/2 (* Amiram Eldar, Oct 17 2024 *)

Formula

a(n) = A146768(n-1)-1. - R. J. Mathar, Mar 30 2011

Extensions

Edited by N. J. A. Sloane, May 23 2008
Showing 1-4 of 4 results.