A034911
One fifth of octo-factorial numbers.
Original entry on oeis.org
1, 13, 273, 7917, 292929, 13181805, 698635665, 42616775565, 2940557513985, 226422928576845, 19245948929031825, 1789873250399959725, 180777198290395932225, 19704714613653156612525, 2305451609797419323665425, 288181451224677415458178125, 38328133012882096255937690625
Offset: 1
-
[n le 1 select 1 else (8*n-3)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 20 2022
-
With[{nn=20},CoefficientList[Series[(-1+(1-8x)^(-5/8))/5,{x,0,nn}],x] Range[0,nn]!] (* or *) FoldList[Times,Range[5,200,8]]/5 (* Harvey P. Dale, May 25 2016 *)
-
[8^n*rising_factorial(5/8,n)/5 for n in range(1,40)] # G. C. Greubel, Oct 20 2022
A147626
Octo-factorial numbers (5).
Original entry on oeis.org
1, 6, 84, 1848, 55440, 2106720, 96909120, 5233092480, 324451733760, 22711621363200, 1771506466329600, 152349556104345600, 14320858273808486400, 1460727543928465612800, 160680029832131217408000, 18960243520191483654144000, 2388990683544126940422144000
Offset: 1
-
[n le 1 select 1 else (8*n-10)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 21 2022
-
s=1;lst={s};Do[s+=n*s;AppendTo[lst,s],{n,5,2*5!,8}];lst
Table[8^(n-1)*Pochhammer[3/4, n-1], {n,40}] (* G. C. Greubel, Oct 21 2022 *)
-
[8^(n-1)*rising_factorial(3/4, n-1) for n in range(1,40)] # G. C. Greubel, Oct 21 2022
A153271
Triangle T(n, k) = Product_{j=0..k} (j*n + prime(m)), with T(n, 0) = prime(m) and m = 3, read by rows.
Original entry on oeis.org
5, 5, 30, 5, 35, 315, 5, 40, 440, 6160, 5, 45, 585, 9945, 208845, 5, 50, 750, 15000, 375000, 11250000, 5, 55, 935, 21505, 623645, 21827575, 894930575, 5, 60, 1140, 29640, 978120, 39124800, 1838865600, 99298742400, 5, 65, 1365, 39585, 1464645, 65909025, 3493178325, 213083877825, 14702787569925
Offset: 0
Triangle begins as:
5;
5, 30;
5, 35, 315;
5, 40, 440, 6160;
5, 45, 585, 9945, 208845;
5, 50, 750, 15000, 375000, 11250000;
5, 55, 935, 21505, 623645, 21827575, 894930575;
Sequences related to m values:
-
m:=3;
function T(n,k)
if k eq 0 then return NthPrime(m);
else return (&*[j*n + NthPrime(m): j in [0..k]]);
end if; return T; end function;
[T(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Dec 03 2019
-
m:=3; seq(seq(`if`(k=0, ithprime(m), mul(j*n + ithprime(m), j=0..k)), k=0..n), n=0..10); # G. C. Greubel, Dec 03 2019
-
T[n_, k_, m_]:= If[k==0, Prime[m], Product[j*n + Prime[m], {j,0,k}]];
Table[T[n,k,3], {n,0,10}, {k,0,n}]//Flatten
-
T(n,k) = my(m=3); if(k==0, prime(m), prod(j=0,k, j*n + prime(m)) ); \\ G. C. Greubel, Dec 03 2019
-
def T(n, k):
m=3
if (k==0): return nth_prime(m)
else: return product(j*n + nth_prime(m) for j in (0..k))
[[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Dec 03 2019
A268730
a(n) = Product_{k = 0..n} 2*(8*k + 5).
Original entry on oeis.org
10, 260, 10920, 633360, 46868640, 4218177600, 447126825600, 54549472723200, 7527827235801600, 1159285394313446400, 197078517033285888000, 36656604168191175168000, 7404634041974617383936000, 1614210221150466589698048000, 377725191749209181989343232000
Offset: 0
a(0) = (1 + 2 + 3 + 4) = 10;
a(1) = (1 + 2 + 3 + 4)*(5 + 6 + 7 + 8) = 260;
a(2) = (1 + 2 + 3 + 4)*(5 + 6 + 7 + 8) *(9 + 10 + 11 + 12) = 10920;
a(3) = (1 + 2 + 3 + 4)*(5 + 6 + 7 + 8) *(9 + 10 + 11 + 12)*(13 + 14 + 15 + 16) = 633360, etc.
-
[&*[(16*k+10): k in [0..n-1]]: n in [1..20]]; // Vincenzo Librandi, Feb 12 2016
-
FullSimplify[Table[(2^(4 n + 13/4) Gamma[1/8] Gamma[n + 13/8])/(Sqrt[Pi] Gamma[1/4]), {n, 0, 14}]]
Table[Product[16 k + 10, {k, 0, n - 1}], {n, 20}] (* Vincenzo Librandi, Feb 12 2016 *)
-
x='x+O('x^50); Vec(serlaplace(10/(1 - 16*x)^(13/8))) \\ G. C. Greubel, Apr 09 2017
A020026
Nearest integer to Gamma(n + 5/8)/Gamma(5/8).
Original entry on oeis.org
1, 1, 1, 3, 10, 45, 251, 1666, 12701, 109544, 1054364, 11202617, 130230419, 1644159040, 22401666926, 327624378798, 5119130918712, 85105551523595, 1499985345603354, 27937227061862467, 548268081089050918
Offset: 0
Showing 1-5 of 5 results.
Comments