cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A375069 Decimal expansion of the sagitta of a regular hexagon with unit side length.

Original entry on oeis.org

1, 3, 3, 9, 7, 4, 5, 9, 6, 2, 1, 5, 5, 6, 1, 3, 5, 3, 2, 3, 6, 2, 7, 6, 8, 2, 9, 2, 4, 7, 0, 6, 3, 8, 1, 6, 5, 2, 8, 5, 9, 7, 3, 7, 3, 0, 9, 4, 8, 0, 9, 6, 8, 5, 9, 7, 2, 0, 9, 6, 5, 1, 0, 2, 7, 4, 0, 3, 3, 4, 9, 1, 5, 4, 5, 5, 9, 9, 9, 8, 1, 4, 5, 9, 4, 2, 6, 9, 0, 6
Offset: 0

Views

Author

Paolo Xausa, Jul 30 2024

Keywords

Examples

			0.133974596215561353236276829247063816528597373...
		

Crossrefs

Essentially the same as A334843.
Cf. A010527 (apothem), A104956 (area).
Cf. sagitta of other polygons with unit side length: A020769 (triangle), A174968 (square), A375068 (pentagon), A374972 (heptagon), A375070 (octagon), A375153 (9-gon), A375189 (10-gon), A375192 (11-gon), A375194 (12-gon).

Programs

Formula

Equals tan(Pi/12)/2 = A019913/2.
Equals 1 - sqrt(3)/2 = 1 - A010527.
Equals A152422^2 = (1 - A332133)^2. - Hugo Pfoertner, Jul 30 2024
Equals A334843-1/2. - R. J. Mathar, Aug 02 2024

A332133 Decimal expansion of (1 + sqrt(3))/2, unique positive root of x^2 - x - 1/2.

Original entry on oeis.org

1, 3, 6, 6, 0, 2, 5, 4, 0, 3, 7, 8, 4, 4, 3, 8, 6, 4, 6, 7, 6, 3, 7, 2, 3, 1, 7, 0, 7, 5, 2, 9, 3, 6, 1, 8, 3, 4, 7, 1, 4, 0, 2, 6, 2, 6, 9, 0, 5, 1, 9, 0, 3, 1, 4, 0, 2, 7, 9, 0, 3, 4, 8, 9, 7, 2, 5, 9, 6, 6, 5, 0, 8, 4, 5, 4, 4, 0, 0, 0, 1, 8, 5, 4, 0, 5, 7, 3, 0, 9, 3, 3, 7, 8, 6, 2, 4, 2, 8, 7, 8, 3, 7, 8
Offset: 1

Views

Author

M. F. Hasler, Oct 29 2020

Keywords

Comments

Also, max {a, b} where {a,b} is the unique solution of a + b = 1 and a^2 + b^2 = 2 (implying also ab = -1/2 and a^3 + b^3 = 5/2 without solving for a, b). See A332122 for a generalization to 3 variables {a, b, c}.
This is a non-integer element of the quadratic number field Q(sqrt(3)) with the given monic minimal polynomial. The other negative root is -(-1 + sqrt(3))/2 = - A152422. - Wolfdieter Lang, Aug 30 2022

Examples

			1.3660254037844386467637231707529361834714026269051903140279...
		

Crossrefs

Cf. A152422 (this - 1 = (sqrt(3)-1)/2), A010527, A332122 (analog for 3rd degree).

Programs

  • Mathematica
    RealDigits[(1 + Sqrt[3])/2, 10, 120][[1]] (* Amiram Eldar, Jun 21 2023 *)
  • PARI
    localprec(111); digits(solve(a=0,2,a^2-a-1/2)\.1^99)
    
  • PARI
    polrootsreal(2*x^2-2*x-1)[2] \\ Charles R Greathouse IV, Jan 26 2023

Formula

Equals 1/2 + Sum_{n>=0} ((-1)^(n + 1)*binomial(2*n, n))/(2^(3*n + 1/2)*(2*n - 1)). - Antonio GraciĆ” Llorente, Nov 11 2024

A173299 Numerators of fractions x^n + y^n, where x + y = 1 and x^2 + y^2 = 2.

Original entry on oeis.org

1, 2, 5, 7, 19, 13, 71, 97, 265, 181, 989, 1351, 3691, 2521, 13775, 18817, 51409, 35113, 191861, 262087, 716035, 489061, 2672279, 3650401, 9973081, 6811741, 37220045, 50843527, 138907099, 94875313, 518408351, 708158977, 1934726305, 1321442641
Offset: 1

Views

Author

J. Lowell, Feb 15 2010

Keywords

Comments

x and y are given by -A152422 and 1-A152422. - R. J. Mathar, Mar 01 2010
Letting f(n) = x^n + y^n, recurrence relation f(n) = f(n - 1) + f(n - 2)/2 implies a(n) / A173300(n) = A026150(n) / 2^(n - 1). - Nick Hobson, Jan 30 2024

Examples

			a(3) = 5 because x^3 + y^3 is 2.5 and 2.5 is 5/2.
		

Crossrefs

Cf. A173300 (denominators).

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(2*x^2-2*x-1); S:=[ r^n+(1-r)^n: n in [1..34] ]; [ Numerator(RationalField()!S[j]): j in [1..#S] ]; // Klaus Brockhaus, Mar 02 2010
    
  • Maple
    A173299 := proc(n) local x,y ; x := (1+sqrt(3))/2 ; y := (1-sqrt(3))/2 ; expand(x^n+y^n) ; numer(%) ; end proc: # R. J. Mathar, Mar 01 2010
  • Mathematica
    Module[{x=(1-Sqrt[3])/2,y},y=1-x;Table[x^n+y^n,{n,40}]]//Simplify// Numerator (* Harvey P. Dale, Aug 24 2019 *)
  • PARI
    { a(n) = numerator( 2 * polcoeff( lift( Mod((1+x)/2,x^2-3)^n ), 0) ) }
    
  • Python
    from fractions import Fraction
    def a173299_gen(a, b):
        while True:
            yield a.numerator
            b, a = b + Fraction(a, 2), b
    g = a173299_gen(1, 2)
    print([next(g) for  in range(34)])  # _Nick Hobson, Feb 20 2024

Formula

a(n) = numerator of ((1 + sqrt(3))/2)^n + ((1 - sqrt(3))/2)^n.

Extensions

Formula, more terms, and PARI script from Max Alekseyev, Feb 24 2010
More terms from Klaus Brockhaus and R. J. Mathar, Mar 01 2010
Showing 1-3 of 3 results.