cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A174312 a(n) = 32*n.

Original entry on oeis.org

0, 32, 64, 96, 128, 160, 192, 224, 256, 288, 320, 352, 384, 416, 448, 480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800, 832, 864, 896, 928, 960, 992, 1024, 1056, 1088, 1120, 1152, 1184, 1216, 1248, 1280, 1312, 1344, 1376, 1408, 1440, 1472, 1504, 1536, 1568, 1600
Offset: 0

Views

Author

Paul Curtz, Nov 27 2010

Keywords

Comments

Subsequence of squares is A017066 (see 2nd formula). - Bernard Schott, Mar 03 2023

Crossrefs

Programs

Formula

G.f.: 32*x/(1-x)^2.
a(A001105(n)) = A017066(n). - Bernard Schott, Mar 05 2023
From Elmo R. Oliveira, Apr 07 2025: (Start)
E.g.f.: 32*x*exp(x).
a(n) = 2*A008598(n) = A152691(n)/2.
a(n) = 2*a(n-1) - a(n-2). (End)

A017066 a(n) = (8*n)^2.

Original entry on oeis.org

0, 64, 256, 576, 1024, 1600, 2304, 3136, 4096, 5184, 6400, 7744, 9216, 10816, 12544, 14400, 16384, 18496, 20736, 23104, 25600, 28224, 30976, 33856, 36864, 40000, 43264, 46656, 50176, 53824, 57600, 61504, 65536, 69696, 73984, 78400, 82944, 87616, 92416, 97344, 102400
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

G.f.: -64*x*(1+x)/(x-1)^3. - R. J. Mathar, Jul 14 2016
a(n) = A000290(8*n) = A008590(n)^2 = A000290(A008590(n)).
From Amiram Eldar, Jan 25 2021: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/384.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/768.
Product_{n>=1} (1 + 1/a(n)) = sinh(Pi/8)/(Pi/8).
Product_{n>=1} (1 - 1/a(n)) = sin(Pi/8)/(Pi/8) = 4*sqrt(2-sqrt(2))/Pi. (End)
From Elmo R. Oliveira, Dec 06 2024: (Start)
E.g.f.: 64*exp(x)*x*(1 + x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
a(n) = n*A152691(n) = 2*A244082(n) = A016802(2*n). (End)

A305548 a(n) = 27*n.

Original entry on oeis.org

0, 27, 54, 81, 108, 135, 162, 189, 216, 243, 270, 297, 324, 351, 378, 405, 432, 459, 486, 513, 540, 567, 594, 621, 648, 675, 702, 729, 756, 783, 810, 837, 864, 891, 918, 945, 972, 999, 1026, 1053, 1080, 1107, 1134, 1161, 1188, 1215, 1242, 1269, 1296, 1323, 1350, 1377, 1404, 1431, 1458, 1485, 1512
Offset: 0

Views

Author

Eric Chen, Jun 05 2018

Keywords

Crossrefs

For a(n) = k*n: A001489 (k=-1), A000004 (k=0), A001477 (k=1), A005843 (k=2), A008585 (k=3), A008591 (k=9), A008607 (k=25), A252994 (k=26), this sequence (k=27), A135628 (k=28), A195819 (k=29), A249674 (k=30), A135631 (k=31), A174312 (k=32), A044102 (k=36), A085959 (k=37), A169823 (k=60), A152691 (k=64).

Programs

  • Mathematica
    Range[0,2000,27]
  • PARI
    a(n)=27*n

Formula

a(n) = 27*n.
a(n) = A008585(A008591(n)) = A008591(A008585(n)).
G.f.: 27*x/(x-1)^2.
From Elmo R. Oliveira, Apr 10 2025: (Start)
E.g.f.: 27*x*exp(x).
a(n) = 2*a(n-1) - a(n-2). (End)

A152692 a(n) = n*3^n - n*2^n - n*1^n.

Original entry on oeis.org

0, 0, 8, 54, 256, 1050, 3984, 14406, 50432, 172530, 580240, 1926078, 6328128, 20619690, 66732176, 214742070, 687698944, 2193154530, 6968850192, 22073006382, 69714716480, 219623377050, 690291036688, 2165100175014
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A152691.

Programs

  • Magma
    [n*3^n-n*2^n-n*1^n: n in [0..30]]; // Vincenzo Librandi, Sep 05 2011
    
  • Mathematica
    Table[n(3^n-2^n-1),{n,0,30}] (* Harvey P. Dale, Oct 20 2013 *)
    CoefficientList[Series[-(2 x^2 (-4 + 21 x - 36 x^2 + 21 x^3))/(-1 + 6 x - 11 x^2 + 6 x^3)^2, {x, 0, 50}], x] (* Stefano Spezia, Sep 04 2018 *)
  • PARI
    vector(30, n, n--; n*(3^n-2^n-1)) \\ G. C. Greubel, Sep 02 2018

Formula

From R. J. Mathar, Dec 12 2008: (Start)
a(n) = (-1)^(n+1)*n*A083321(n).
G.f.: 2*x^2*(4-21*x+36*x^2-21*x^3)/((1-x)^2*(1-3*x)^2*(1-2*x)^2). (End)
E.g.f.: x*(3*exp(3*x) - 2*exp(2*x) - exp(x)). - G. C. Greubel, Sep 02 2018

Extensions

Offset changed from 1 to 0 by Vincenzo Librandi, Sep 05 2011

A158067 a(n) = 64*n^2 - 2*n.

Original entry on oeis.org

62, 252, 570, 1016, 1590, 2292, 3122, 4080, 5166, 6380, 7722, 9192, 10790, 12516, 14370, 16352, 18462, 20700, 23066, 25560, 28182, 30932, 33810, 36816, 39950, 43212, 46602, 50120, 53766, 57540, 61442, 65472, 69630, 73916, 78330, 82872
Offset: 1

Views

Author

Vincenzo Librandi, Mar 12 2009

Keywords

Comments

The identity (64*n - 1)^2 - (64*n^2 - 2*n)*8^2 = 1 can be written as (A152691(n+1) - 1)^2 - a(n)*8^2 = 1. - Vincenzo Librandi, Feb 11 2012

Crossrefs

Cf. A152691.

Programs

  • Magma
    [64*n^2 - 2*n: n in [1..50]]
    
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {62, 252, 570}, 50] (* Vincenzo Librandi, Feb 11 2012 *)
    Table[64n^2-2n,{n,40}] (* Harvey P. Dale, Nov 27 2024 *)
  • PARI
    for(n=1, 50, print1(64*n^2 - 2*n ", ")); \\ Vincenzo Librandi, Feb 11 2012

Formula

G.f.: x*(-62 - 66*x)/(x-1)^3. - Vincenzo Librandi, Feb 11 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Feb 11 2012

A327916 Triangle T(k, n) read by rows: Array A(k, n) = 2^k*(k + 1 + 2*n), k >= 0, n >= 0, read by antidiagonals upwards.

Original entry on oeis.org

1, 4, 3, 12, 8, 5, 32, 20, 12, 7, 80, 48, 28, 16, 9, 192, 112, 64, 36, 20, 11, 448, 256, 144, 80, 44, 24, 13, 1024, 576, 320, 176, 96, 52, 28, 15, 2304, 1280, 704, 384, 208, 112, 60, 32, 17, 5120, 2816, 1536, 832, 448, 240, 128, 68, 36, 19, 11264, 6144, 3328, 1792, 960, 512, 272, 144, 76, 40, 21
Offset: 0

Views

Author

Wolfdieter Lang, Oct 03 2019

Keywords

Comments

The array A(k, n) arises from the following Pascal-type triangles PTodd(k), k >= 0 based on the positive odd integers A005408.
For example, the Pascal-type triangle PTodd(k), for k = 3 is
1 3 5 7
4 8 12
12 20
32
Taken upside-down such triangles become so-called addition towers of height k+1 (Rechenturm in German elementary schools; thanks to my correspondent Bennet D.), starting with any k+1 numbers. Here the positive odd numbers are used.
The sequence s of the final number of these Pascal-type triangles PT(k), for k >= 0, begins 1, 4, 12, 32, ...; s(k) = (k+1)*2^k = A001787(k+1), for k >= 0.
For k -> infinity the left-aligned row sequences build the array A(k, n), with k >= 0 and n >= 0, namely A(k, n) = 2^k*(k + 2*n + 1); this array begins:
k\n 0 1 2 3 4 5 ...
-------------------------------
0: 1 3 5 7 9 11 ... {A005408(n)}
1: 4 8 12 16 20 24 ... {A008586(n+1)}
2: 12 20 28 36 44 52 ... {A017113(n+1)}
3: 32 48 64 80 96 112 ... {A008598(n+2)}
4: 80 112 144 176 208 240 ... {16*A005408(n+2)}
5: 192 256 320 384 448 512 ... {A152691(n+3)}
6: 448 576 704 832 960 1088 ... {64*A005408(n+3)}
...
The sequence s, the first (n=0) column of A, is always the binomial transform of the first (k=0) row in A.
A(k, n) = Sum_{j=0..k} binomial(k, j)*(2*(n+j)+1) = 2^k*(k + 1 + 2*n), for k >= 0 and n >= 0.
The corresponding antidiagonal-upwards read triangle is T(k, n) = A(k-n, n) = 2^(k-n)*(k + n + 1), n >= 0, k = 0..n.
If the nonnegative integers A001477 are used as k = 0 row of the array Anneg(k, n) = 2^(k-1)*(2*n + k), for k >= 0, n >= 0, with the triangle Tnneg(k, n) = Anneg(k-n, n) = (n + k)*2^(k-n-1), k >= 0, n = 0..k, then the s sequence is snneg(k) = Tnneg(k, 0) = k*2^{k-1} = A001787(k), the binomial transform of the sequence{A001477(n)}_{n>=0}. The triangle Tnneg begins [0], [1, 1], [4, 3, 2], [12, 8, 5, 3], [32, 20, 12, 7, 4], ... . See A062111 and the row-reversed triangle A152920 for other versions.

Examples

			The triangle T(k, n) begins:
   k\n    0    1    2    3   4   5   6   7  8  9 10 ...
  -----------------------------------------------------
   0:     1
   1:     4    3
   2:    12    8    5
   3:    32   20   12    7
   4:    80   48   28   16   9
   5:   192  112   64   36  20  11
   6:   448  256  144   80  44  24  13
   7:  1024  576  320  176  96  52  28  15
   8:  2304 1280  704  384 208 112  60  32 17
   9:  5120 2816 1536  832 448 240 128  68 36 19
  10: 11264 6144 3328 1792 960 512 272 144 76 40 21
  ...
		

Crossrefs

Column sequences without leading zeros are for n=0..9: A001787(n+1), A001792(n+1), A045623(n+2), A045891(n+3), A034007(n+4), A111297(n+3), A159694(n+1), A159695(n+1), A159696(n+1), A159697(n+1).
The sequence of (sub)diagonal k, for k >= 0, is the row k sequence of array A: {(k + 2*n + 1)*2^k}_{k >= 0}.
Row sums: A213569(k+1), k >= 0 (see the J. M. Bergot comments there).

Programs

  • Mathematica
    Table[2^#*(# + 1 + 2 n) &[k - n], {k, 0, 10}, {n, 0, k}] // Flatten (* Michael De Vlieger, Oct 03 2019 *)

Formula

Array A(k, n) = Sum_{j=0..k} binomial(k, j)*(2*(n+j) + 1) = 2^k*(k + 1+ 2*n), for k >= 0 and n >= 0.
Triangle T(k, n) = A(k-n, n) = 2^(k-n)*(k + n + 1), n >= 0, k = 0..n.
Recurrence: T(k, 0) = (k+1)*2^k = A001787(k+1), for k >= 0, and T(k, n) = T(k, n-1) - T(k-1, n-1), for n >= 1, k >= 1, with T(k, n) = 0 if k < n.
O.g.f. for row polynomials: G(z,x) = Sum_{n=0..k} R(k, x)*z^n =
(1 + x*z*(1 - 4*z))/((1 - 2*z)^2*(1 - x*z)^2).
T(k, 0) = Sum_{n=0..k} binomial(k,n)*T(n, n), k >= 0 (binomial transform).

Extensions

Definition corrected by Georg Fischer, Jul 13 2023

A346514 a(n) = n^4 + 28*n^3 + 252*n^2 + 784*n + 448.

Original entry on oeis.org

448, 1513, 3264, 5905, 9664, 14793, 21568, 30289, 41280, 54889, 71488, 91473, 115264, 143305, 176064, 214033, 257728, 307689, 364480, 428689, 500928, 581833, 672064, 772305, 883264, 1005673, 1140288, 1287889, 1449280, 1625289, 1816768, 2024593, 2249664, 2492905, 2755264
Offset: 0

Views

Author

Lamine Ngom, Jul 21 2021

Keywords

Comments

The product of eight positive integers shifted by 2; i.e., m * (m+2) * (m+4) * ... * (m+14) = A346515(m) can always be expressed as the difference of two squares: x^2 - y^2.
This sequence gives the x-values for each product. The y-values are A152691(n+7).
More generally, for any k, we have n * (n+k) * (n+2*k) * ... * (n+7*k) = a(n,k) = x(n,k)^2 - y(n,k)^2, where
x(n,k) = n^4 + 14*k*n^3 + 63*k^2*n^2 + 98*k^3*n + 28*k^4,
y(n,k) = 4*k^3*(2*n + 7*k).
A239035(n) corresponds to a(n,k) in the case k = 1, with related y(n,k) = A346376(n).
This sequence is y(n,k) in the case k = 2, with related y(n,k) = A152691(n+7).

Crossrefs

Formula

a(n) = sqrt(A346515(n) + A152691(n+7)^2).
G.f.: (448 - 727*x + 179*x^2 + 235*x^3 - 111*x^4)/(1 - x)^5. - Stefano Spezia, Jul 22 2021

A346515 a(n) = n*(n+2)*(n+4)*(n+6)*(n+8)*(n+10)*(n+12)*(n+14).

Original entry on oeis.org

0, 2027025, 10321920, 34459425, 92897280, 218243025, 464486400, 916620705, 1703116800, 3011753745, 5109350400, 8365982625, 13284311040, 20534684625, 30996725760, 45808142625, 66421555200, 94670161425, 132843110400, 183771489825, 250925875200, 338526428625, 451666575360
Offset: 0

Views

Author

Lamine Ngom, Jul 21 2021

Keywords

Comments

a(n) can always be expressed as the difference of two squares: x^2 - y^2.
A346514(n) gives the x-values for each product. The y-values being A152691(n+7).
More generally, for any k, we have: n*(n+k)*(n+2*k)*...*(n+7*k) = a(n,k) = x(n,k)^2 - y(n,k)^2, where
x(n,k) = n^4 + 14*k*n^3 + 63*k^2*n^2 + 98*k^3*n + 28*k^4,
y(n,k) = 8*k^3*n + 28*k^4.
A239035(n) corresponds to a(n,k) in the case k = 1, with related y(n,k) = A346376(n).

Crossrefs

Programs

  • Mathematica
    a[n_] := (n + 14)!!/(n - 2)!!; Array[a, 23, 0] (* Amiram Eldar, Jul 22 2021 *)

Formula

a(n) = A346514(n)^2 - A152691(n+7)^2.

A363436 Array read by ascending antidiagonals: A(n, k) = k*n^2, with k >= 0.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 4, 2, 0, 0, 9, 8, 3, 0, 0, 16, 18, 12, 4, 0, 0, 25, 32, 27, 16, 5, 0, 0, 36, 50, 48, 36, 20, 6, 0, 0, 49, 72, 75, 64, 45, 24, 7, 0, 0, 64, 98, 108, 100, 80, 54, 28, 8, 0, 0, 81, 128, 147, 144, 125, 96, 63, 32, 9, 0, 0, 100, 162, 192, 196, 180, 150, 112, 72, 36, 10, 0
Offset: 0

Views

Author

Stefano Spezia, Jul 08 2023

Keywords

Examples

			The array begins:
  0,  0,  0,   0,   0,   0,   0, ...
  0,  1,  2,   3,   4,   5,   6, ...
  0,  4,  8,  12,  16,  20,  24, ...
  0,  9, 18,  27,  36,  45,  54, ...
  0, 16, 32,  48,  64,  80,  96, ...
  0, 25, 50,  75, 100, 125, 150, ...
  0, 36, 72, 108, 144, 180, 216, ...
  ...
		

Crossrefs

Cf. A000290 (k = 1), A001105 (k = 2), A033428 (k = 3), A016742 (k = 4), A033429 (k = 5), A033581 (k = 6), A033582 (k = 7), A139098 (k = 8), A016766 (k = 9), A033583 (k = 10), A033584 (k = 11), A135453 (k = 12), A152742 (k = 13), A144555 (k = 14), A064761 (k = 15), A016802 (k = 16), A244630 (k = 17), A195321 (k = 18), A244631 (k = 19), A195322 (k = 20), A064762 (k = 21), A195323 (k = 22), A244632 (k = 23), A195824 (k = 24), A016850 (k = 25), A244633 (k = 26), A244634 (k = 27), A064763 (k = 28), A244635 (k = 29), A244636 (k = 30).
Cf. A001477 (n = 1), A008586 (n = 2), A008591 (n = 3), A008598 (n = 4), A008607 (n = 5), A044102 (n = 6), A152691 (n = 8).
Cf. A000007 (n = 0 or k = 0), A000578 (main diagonal), A002415 (antidiagonal sums), A004247.

Programs

  • Mathematica
    A[n_,k_]:=k n^2; Table[A[n-k,k],{n,0,11},{k,0,n}]//Flatten

Formula

O.g.f.: x*y*(1 + x)/((1 - x)^3*(1 - y)^2).
E.g.f.: x*y*(1 + x)*exp(x + y).
A(n, k) = n*A004247(n, k).
Showing 1-9 of 9 results.