A152749 a(n) = (n+1)*(3*n+1)/4 for n odd, a(n) = n*(3*n+2)/4 for n even.
0, 2, 4, 10, 14, 24, 30, 44, 52, 70, 80, 102, 114, 140, 154, 184, 200, 234, 252, 290, 310, 352, 374, 420, 444, 494, 520, 574, 602, 660, 690, 752, 784, 850, 884, 954, 990, 1064, 1102, 1180, 1220, 1302, 1344, 1430, 1474, 1564, 1610, 1704, 1752, 1850, 1900, 2002
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Programs
-
Haskell
a152749 n = a152749_list !! (n-1) a152749_list = scanl1 (+) a109043_list -- Reinhard Zumkeller, Mar 31 2012
-
Magma
[IsOdd(n) select (n+1)*(3*n+1)/4 else n*(3*n+2)/4: n in [0..52]];
-
Magma
f:=func
; [0] cat [f(n*m): m in [-1,1], n in [1..30]]; // Bruno Berselli, Nov 13 2012 -
Maple
A152749 := proc(n): if type(n,even) then n*(3*n+2)/4 else (n+1)*(3*n+1)/4 fi: end: seq(A152749(n), n=0..51); # Johannes W. Meijer, Aug 21 2011
-
Mathematica
Table[If[OddQ[n],(n+1)*(3*n+1)/4,n*(3*n+2)/4],{n,0,60}] (* Vladimir Joseph Stephan Orlovsky, Feb 03 2012 *) LinearRecurrence[{1,2,-2,-1,1}, {0, 2, 4, 10, 14}, 50] (* Vincenzo Librandi, Feb 22 2012 *) Select[Range[1,1000], IntegerQ[Sqrt[12#+1]]&] (* Vicente Izquierdo Gomez, Jul 22 2013 *)
Formula
From R. J. Mathar, Jan 03-06 2009: (Start)
G.f.: 2*x*(1+x+x^2)/((1+x)^2*(1-x)^3).
a(n) = 2*A001318(n) = ((6*n^2+6*n+1) - (2*n+1)*(-1)^n)/8. (End)
From Amiram Eldar, Mar 15 2022: (Start)
Sum_{n>=1} 1/a(n) = 3 - Pi/sqrt(3).
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*(log(3)-1). (End)
Extensions
Edited, typo corrected and extended by Klaus Brockhaus, Jan 02 2009
Leading term a(0)=0 added by Johannes W. Meijer, Aug 21 2011
Comments