cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152947 a(n) = 1 + (n-2)*(n-1)/2.

Original entry on oeis.org

1, 1, 2, 4, 7, 11, 16, 22, 29, 37, 46, 56, 67, 79, 92, 106, 121, 137, 154, 172, 191, 211, 232, 254, 277, 301, 326, 352, 379, 407, 436, 466, 497, 529, 562, 596, 631, 667, 704, 742, 781, 821, 862, 904, 947, 991, 1036, 1082, 1129, 1177, 1226, 1276, 1327, 1379
Offset: 1

Views

Author

Keywords

Comments

The sequence is the sum of upward sloping terms in an infinite lower triangle with 1's in the leftmost column and the odd integers in all other columns. - Gary W. Adamson, Jan 29 2014
For n > 1, if Kruskal's algorithm is run on a weighted connected graph of n nodes, then a(n) is the maximum number of iterations required to reach a spanning tree. - Eric M. Schmidt, Jun 04 2016
It can be observed that A152947/A000079, whose reduced numerators are A213671, is identical to its inverse binomial transform (except for signs); this shows that it is an "autosequence" (more precisely, an autosequence of the second kind). - Jean-François Alcover (this remark is due to Paul Curtz), Jun 20 2016
Harnack's theorem (1876) states that the number of components of a plane algebraic curve of order n is at most a(n) and that this number can be achieved. For example, the zero set of a quadratic has at most 1 component (e.g. a circle); a cubic elliptic curve has at most 2 components. The number of topological arrangements (Hilbert's 16th problem) is only known for a few values of n. For quartics, a(4)=4 and there are 6 topological arrangements: 0 to 4 unnested ovals or 2 nested ovals. - Robert McLachlan, Aug 19 2024
a(n) is the number of permutations (cyclic or not) of length (n-1) that avoid both patterns 123 and 231. a(5) = 7: 1432, 2143, 3214, 4132, 4213, 4312, 4321. - Alois P. Heinz, Nov 20 2024

Crossrefs

Programs

Formula

a(n) = 1 + A000217(n-2) = A000124(n-2), n > 1. - R. J. Mathar, Jan 03 2009
a(n) = a(n-1) + n - 2 for n>1, a(1) = 1. - Vincenzo Librandi, Nov 26 2010
G.f.: -x*(1-2*x+2*x^2)/(x-1)^3. - R. J. Mathar, Nov 28 2010
From Ilya Gutkovskiy, Jun 04 2016: (Start)
E.g.f.: (4 - 2*x + x^2)*exp(x)/2 - 2.
Sum_{n>=1} 1/a(n) = 2*Pi*tanh(sqrt(7)*Pi/2)/sqrt(7) + 1 = A226985 + 1. (End)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3. - Wesley Ivan Hurt, Jun 20 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = 1 - A228918. - Amiram Eldar, Jan 08 2023