A152947 a(n) = 1 + (n-2)*(n-1)/2.
1, 1, 2, 4, 7, 11, 16, 22, 29, 37, 46, 56, 67, 79, 92, 106, 121, 137, 154, 172, 191, 211, 232, 254, 277, 301, 326, 352, 379, 407, 436, 466, 497, 529, 562, 596, 631, 667, 704, 742, 781, 821, 862, 904, 947, 991, 1036, 1082, 1129, 1177, 1226, 1276, 1327, 1379
Offset: 1
Links
- Shawn A. Broyles, Table of n, a(n) for n = 1..1000
- Christian Bean, Bjarki Gudmundsson, and Henning Ulfarsson, Automatic discovery of structural rules of permutation classes, arXiv:1705.04109 [math.CO], 2017.
- Murat Ersen Berberler, Onur Ugurlu, and Gozde Kizilates, On a Subroutine for Covering Zeros in Hungarian Algorithm, 2012, see section 5.1 on page 92.
- Miklos Bona, Michael Cory, Cyclic Permutations Avoiding Pairs of Patterns of Length Three, arXiv:1805.05196 [math.CO], 2018.
- Hayat Cheballah, Samuele Giraudo, and Rémi Maurice, Combinatorial Hopf algebra structure on packed square matrices, arXiv preprint arXiv:1306.6605 [math.CO], 2013.
- Michael Dairyko, Samantha Tyner, Lara Pudwell, and Casey Wynn, Non-contiguous pattern avoidance in binary trees, Electron. J. Combin. 19 (2012), no. 3, Paper 22, 21 pp. MR2967227.
- Loïc Foissy, The antipode of of [sic] a Com-PreLie Hopf algebra, arXiv:2406.01120 [math.CO], 2024. See p. 9.
- D. A. Gudkov, The topology of real projective algebraic varieties, Russ. Math. Surv. 29 (1974), 1-79.
- Lara Pudwell, Pattern avoidance in trees (slides from a talk, mentions many sequences), 2012.
- Franck Ramaharo, Statistics on some classes of knot shadows, arXiv:1802.07701 [math.CO], 2018.
- Franck Ramaharo, A generating polynomial for the pretzel knot, arXiv:1805.10680 [math.CO], 2018.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[1+(n-2)*(n-1)/2: n in [1..60]]; // Klaus Brockhaus, Nov 28 2010
-
Maple
A152947:=n->1+(n-2)*(n-1)/2: seq(A152947(n), n=1..100); # Wesley Ivan Hurt, Jun 20 2016
-
Mathematica
Table[1 + (n^2 - 3n + 2)/2, {n, 50}] (* Alonso del Arte, Jan 30 2014 *)
-
PARI
a(n)=1+(n-2)*(n-1)/2 \\ Charles R Greathouse IV, Oct 07 2015
-
Sage
[1+binomial(n,2) for n in range(0, 54)] # Zerinvary Lajos, Mar 12 2009
Formula
a(n) = a(n-1) + n - 2 for n>1, a(1) = 1. - Vincenzo Librandi, Nov 26 2010
G.f.: -x*(1-2*x+2*x^2)/(x-1)^3. - R. J. Mathar, Nov 28 2010
From Ilya Gutkovskiy, Jun 04 2016: (Start)
E.g.f.: (4 - 2*x + x^2)*exp(x)/2 - 2.
Sum_{n>=1} 1/a(n) = 2*Pi*tanh(sqrt(7)*Pi/2)/sqrt(7) + 1 = A226985 + 1. (End)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3. - Wesley Ivan Hurt, Jun 20 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = 1 - A228918. - Amiram Eldar, Jan 08 2023
Comments