cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A006043 A traffic light problem: expansion of 2/(1 - 3*x)^3.

Original entry on oeis.org

2, 18, 108, 540, 2430, 10206, 40824, 157464, 590490, 2165130, 7794468, 27634932, 96722262, 334807830, 1147912560, 3902902704, 13172296626, 44165935746, 147219785820, 488149816140, 1610894393262, 5292938720718, 17322344904168, 56485907296200, 183579198712650, 594796603828986
Offset: 0

Views

Author

Keywords

Comments

Column 2 of square array A152818. - Omar E. Pol, Jan 05 2009
In [Bach et al., Section 9], 2*a(n-2) counts the "small diagrams". - Eric M. Schmidt, Sep 23 2017

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

a(n) = (n+2)*(n+1)*3^n. - Zerinvary Lajos, Apr 25 2007, corrected by R. J. Mathar, Mar 14 2011
a(n) = 2*A027472(n+3) = A116138(n+1)/3. - R. J. Mathar, Mar 14 2011
a(n) = 2*A000217(n+1)*A000244(n). - Zak Seidov, Mar 14 2011
E.g.f.: exp(3*x)*(2 + 12*x + 9*x^2). - Stefano Spezia, Jan 01 2023
From Amiram Eldar, Jan 08 2023: (Start)
Sum_{n>=0} 1/a(n) = 3 - 6*log(3/2).
Sum_{n>=0} (-1)^n/a(n) = 12*log(4/3) - 3. (End)

A006044 a(n) = 4^(n-4)*(n-1)*(n-2)*(n-3).

Original entry on oeis.org

6, 96, 960, 7680, 53760, 344064, 2064384, 11796480, 64880640, 346030080, 1799356416, 9160359936, 45801799680, 225485783040, 1095216660480, 5257039970304, 24970939858944, 117510305218560, 548381424353280, 2539871860162560, 11683410556747776, 53409876830846976
Offset: 4

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=3 of square array A152818. - Paul Curtz, Dec 17 2008 [corrected by Omar E. Pol, Jan 07 2009]

Programs

  • Magma
    [4^(n-4)*(n-3)*(n-2)*(n-1): n in [4..30]]; // Vincenzo Librandi, Aug 14 2011
  • Mathematica
    a[n_] := 4^(n - 4)*(n - 1)*(n - 2)*(n - 3); Array[a, 25, 4] (* Amiram Eldar, Jan 08 2023 *)

Formula

G.f. = 6*x^4/(1-4*x)^4. - Emeric Deutsch, Apr 29 2004
a(n) = 6*A038846(n). - R. J. Mathar , Mar 22 2013
E.g.f.: (3 + exp(4*x)*(32*x^3 - 24*x^2 + 12*x - 3))/128. - Stefano Spezia, Jan 01 2023
From Amiram Eldar, Jan 08 2023: (Start)
Sum_{n>=4} 1/a(n) = 18*log(4/3) - 5.
Sum_{n>=4} (-1)^n/a(n) = 50*log(5/4) - 11. (End)

Extensions

More terms from Emeric Deutsch, Apr 29 2004
Erroneous reference deleted by Martin J. Erickson (erickson(AT)truman.edu), Nov 03 2010
Entry revised by N. J. A. Sloane, Dec 27 2021

A154128 a(n) = 5^n*(n+4)!/n!.

Original entry on oeis.org

24, 600, 9000, 105000, 1050000, 9450000, 78750000, 618750000, 4640625000, 33515625000, 234609375000, 1599609375000, 10664062500000, 69726562500000, 448242187500000, 2838867187500000, 17742919921875000, 109588623046875000
Offset: 0

Views

Author

Omar E. Pol, Jan 05 2009

Keywords

Comments

Column 4 of square array A152818.

Crossrefs

Programs

  • Magma
    [5^n*(n+4)*(n+3)*(n+2)*(n+1): n in [0..20]]; // Vincenzo Librandi, Aug 15 2011
  • Mathematica
    LinearRecurrence[{25, -250, 1250, -3125, 3125}, {24, 600, 9000, 105000, 1050000}, 25] (* or *) Table[5^n*(n+4)*(n+3)*(n+2)*(n+1), {n,0,25}] (* G. C. Greubel, Sep 02 2016 *)

Formula

a(n) = 5^n*(n+4)*(n+3)*(n+2)*(n+1).
From R. J. Mathar, Feb 06 2009: (Start)
a(n) = A052762(n+4)*A000351(n).
a(n) = 24*A036071(n).
G.f: 24/(1-5*x)^5. (End)
From G. C. Greubel, Sep 02 2016: (Start)
a(n) = 25*a(n-1) - 250*a(n-2) + 1250*a(n-3) - 3125*a(n-4) + 3125*a(n-5).
E.g.f.: (24 + 480*x + 1800*x^2 + 2000*x^3 + 625*x^4)*exp(5*x). (End)

Extensions

More terms from R. J. Mathar, Feb 06 2009
Showing 1-3 of 3 results.