cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A154262 a(n) = 9*n^2 - 10*n + 3.

Original entry on oeis.org

3, 2, 19, 54, 107, 178, 267, 374, 499, 642, 803, 982, 1179, 1394, 1627, 1878, 2147, 2434, 2739, 3062, 3403, 3762, 4139, 4534, 4947, 5378, 5827, 6294, 6779, 7282, 7803, 8342, 8899, 9474, 10067, 10678, 11307, 11954, 12619, 13302, 14003, 14722, 15459, 16214, 16987
Offset: 0

Views

Author

Vincenzo Librandi, Jan 06 2009

Keywords

Comments

The identity (81*n^2 + 72*n + 17)^2 - (9*n^2 + 8*n + 2)*(27*n + 12)^2 = 1 can be written as A154295(n+1)^2 - a(n+1)*A154266(n)^2 = 1. - Vincenzo Librandi, Feb 03 2012
For n >= 1, the continued fraction expansion of sqrt(a(n)) is [3n-2; {2, 1, 3n-3, 1, 2, 6n-4}]. For n=1, this collapses to [1; {2}]. - Magus K. Chu, Sep 05 2022

Crossrefs

Programs

Formula

From Vincenzo Librandi, Feb 02 2012: (Start)
G.f.: (3 - 7*x + 22*x^2)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
E.g.f.: (3 - x + 9*x^2)*exp(x). - Elmo R. Oliveira, Oct 31 2024

Extensions

Edited by Charles R Greathouse IV, Jul 25 2010

A154295 a(n) = 81*n^2 - 90*n + 26.

Original entry on oeis.org

26, 17, 170, 485, 962, 1601, 2402, 3365, 4490, 5777, 7226, 8837, 10610, 12545, 14642, 16901, 19322, 21905, 24650, 27557, 30626, 33857, 37250, 40805, 44522, 48401, 52442, 56645, 61010, 65537, 70226, 75077, 80090, 85265, 90602, 96101, 101762
Offset: 0

Views

Author

Vincenzo Librandi, Jan 06 2009

Keywords

Comments

The identity (81*n^2 + 72*n + 17)^2 - (9*n^2 + 8*n + 2)*(27*n + 12)^2 = 1 can be written as a(n+1)^2 - A154262(n+1)*A154266(n)^2 = 1. - Vincenzo Librandi, Feb 03 2012

Crossrefs

Programs

  • Magma
    I:=[26, 17, 170]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 03 2012
    
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {26, 17, 170}, 40] (* Vincenzo Librandi, Feb 03 2012 *)
    Table[81*n^2 - 90*n + 26,{n,0,25}] (* G. C. Greubel, Sep 10 2016 *)
  • PARI
    for(n=0, 22, print1(81*n^2-90*n+26", ")); \\ Vincenzo Librandi, Feb 03 2012
    
  • PARI
    x='x+O('x^99); Vec((26-61*x+197*x^2)/(1-x)^3) \\ Altug Alkan, Sep 10 2016

Formula

a(n) = A002522(|9n-5|). - R. J. Mathar, Jan 07 2009
G.f.: (26 - 61*x + 197*x^2)/(1 - x)^3. - Vincenzo Librandi, Feb 03 2012
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3). - Vincenzo Librandi, Feb 03 2012
E.g.f.: (26 - 9*x + 81*x^2)*exp(x). - G. C. Greubel, Sep 10 2016

Extensions

Corrected by Don Reble, Jun 16 2010

A360962 Square array T(n,k) = k*((3+6*n)*k - 1)/2; n>=0, k>=0, read by antidiagonals upwards.

Original entry on oeis.org

0, 0, 1, 0, 4, 5, 0, 7, 17, 12, 0, 10, 29, 39, 22, 0, 13, 41, 66, 70, 35, 0, 16, 53, 93, 118, 110, 51, 0, 19, 65, 120, 166, 185, 159, 70, 0, 22, 77, 147, 214, 260, 267, 217, 92, 0, 25, 89, 174, 262, 335, 375, 364, 284, 117, 0, 28, 101, 201, 310, 410, 483, 511, 476, 360, 145
Offset: 0

Views

Author

Paul Curtz, Feb 27 2023

Keywords

Comments

The main diagonal is A024394.
The antidiagonals sums are A000537.

Examples

			The rows are:
  0  1  5  12  22  35  51  70 ... = A000326
  0  4 17  39  70 110 159 217 ... = A022266
  0  7 29  66 118 185 267 364 ... = A022272
  0 10 41  93 166 260 375 511 ... = A022278
  0 13 53 120 214 335 483 658 ... = A022284
  ... .
Columns: A000004, A016777, A017581, A154266=3*A017209, 2*A348845, 5*A161447, 3*A158057(n+1), ... (coefficients from A026741).
Difference between two consecutive rows are: A033428.
This square array read by antidiagonals leads to the triangle
  0
  0  1
  0  4  5
  0  7 17 12
  0 10 29 39  22
  0 13 41 66  70  35
  0 16 53 93 118 110 51
  ... .
		

Crossrefs

Programs

  • Maple
    T:= (n,k)-> k*(k*(3+6*n)-1)/2:
    seq(seq(T(d-k,k), k=0..d), d=0..10);  # Alois P. Heinz, Feb 28 2023
  • Mathematica
    T[n_, k_] := ((6*n + 3)*k - 1)*k/2; Table[T[n - k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Feb 27 2023 *)
  • PARI
    T(n,k) = k*((3+6*n)*k-1)/2; \\ Michel Marcus, Feb 27 2023

Formula

Take successively sequences n*(3*n-1)/2, n*(9*n-1)/2, n*(15*n-1)/2, n*(21*n-1)/2, ... listed in the EXAMPLE section.
From Stefano Spezia, Feb 21 2024: (Start)
G.f.: y*(1 + 2*y + x*(2 + y))/((1 - x)^2*(1 - y)^3).
E.g.f.: exp(x+y)*y*(2 + 3*y + 6*x*(1 + y))/2. (End)
Showing 1-3 of 3 results.