cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A154691 Expansion of (1+x+x^2) / ((1-x)*(1-x-x^2)).

Original entry on oeis.org

1, 3, 7, 13, 23, 39, 65, 107, 175, 285, 463, 751, 1217, 1971, 3191, 5165, 8359, 13527, 21889, 35419, 57311, 92733, 150047, 242783, 392833, 635619, 1028455, 1664077, 2692535, 4356615, 7049153, 11405771, 18454927, 29860701, 48315631, 78176335
Offset: 0

Views

Author

R. J. Mathar, Jan 14 2009

Keywords

Crossrefs

Programs

  • Haskell
    a154691 n = a154691_list !! n
    a154691_list = 1 : zipWith (+)
                       a154691_list (drop 2 $ map (* 2) a000045_list)
    -- Reinhard Zumkeller, Nov 17 2013
    
  • Magma
    A154691:= func< n | 2*Fibonacci(n+3) - 3 >;
    [A154691(n): n in [0..40]]; // G. C. Greubel, Jan 18 2025
    
  • Maple
    A154691 := proc(n) coeftayl( (1+x+x^2)/(1-x-x^2)/(1-x),x=0,n) ; end proc:
  • Mathematica
    Fibonacci[Range[3,60]]*2 -3 (* Vladimir Joseph Stephan Orlovsky, Mar 19 2010 *)
    CoefficientList[Series[(1 + x + x^2)/((1 - x - x^2)(1 - x)), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 18 2012 *)
  • PARI
    Vec((1+x+x^2) / ((1-x-x^2)*(1-x)) + O(x^60)) \\ Colin Barker, Feb 01 2017
    
  • Python
    def A154691(n): return 2*fibonacci(n+3) - 3
    print([A154691(n) for n in range(41)]) # G. C. Greubel, Jan 18 2025

Formula

a(n+1) - a(n) = A006355(n+3) = A055389(n+3).
a(n) = A066629(n-1) + A066629(n).
a(n) = A006355(n+4) - 3 = A078642(n+1) - 3.
a(n+1) = a(n) + 2*A000045(n+2). - Reinhard Zumkeller, Nov 17 2013
From Colin Barker, Feb 01 2017: (Start)
a(n) = -3 + (2^(1-n)*((1-r)^n*(-2+r) + (1+r)^n*(2+r))) / r where r=sqrt(5).
a(n) = 2*a(n-1) - a(n-3) for n>2. (End)
a(n) = 2*Fibonacci(n+3) - 3. - Greg Dresden, Oct 10 2020
E.g.f.: 4*exp(x/2)*(5*cosh(sqrt(5)*x/2) + 2*sqrt(5)*sinh(sqrt(5)*x/2))/5 - 3*exp(x). - Stefano Spezia, Apr 09 2025