cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 26 results. Next

A272947 Number of factors Fibonacci(i) > 1 of A160009(n+1).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 2, 2, 3, 1, 2, 2, 2, 3, 1, 2, 2, 2, 3, 3, 1, 2, 2, 2, 2, 3, 3, 3, 1, 2, 2, 2, 2, 3, 3, 3, 3, 1, 4, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 1, 4, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 1, 4, 4, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3
Offset: 1

Views

Author

Clark Kimberling, May 13 2016

Keywords

Examples

			A160009(15) = 30 = 2*3*5, so that a(15) = 3.
		

Crossrefs

Programs

  • Mathematica
    s = {1}; nn = 60; f = Fibonacci[2 + Range[nn]]; Do[s = Union[s, Select[s*f[[i]], # <= f[[nn]] &]], {i, nn}]; s =  Prepend[s, 0]; Take[s, 100]  (* A160009 *)
    isFibonacciQ[n_] := Apply[Or, Map[IntegerQ, Sqrt[{# + 4, # - 4} &[5 n^2]]]];
    ans = Join[{{0}}, {{1}}, Table[#[[Flatten[Position[Map[Apply[Times, #] &, #], s[[n]]]][[1]]]] &[Rest[Subsets[Rest[Map[#[[1]] &, Select[Map[{#, isFibonacciQ[#]} &, Divisors[s[[n]]]], #[[2]] &]]]]]], {n, 3, 500}]]
    Map[Length, ans] (* A272947 *)
    Flatten[Position[Map[Length, ans], 1]]  (* A272948 *)
    Map[Apply[Times, #] &, Select[ans, Length[#] == 1 &]]  (* A000045 *)
    Map[Apply[Times, #] &, Select[ans, Length[#] == 2 &]]  (* A271354 *)
    Map[Apply[Times, #] &, Select[ans, Length[#] == 3 &]]  (* A272949 *)
    Map[Apply[Times, #] &, Select[ans, Length[#] == 4 &]]  (* A272950 *)
    (* Peter J. C. Moses, May 11 2016 *)

A272948 Positions of Fibonacci numbers in ordered sequence A160009 of all products of Fibonacci numbers.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 9, 12, 16, 21, 27, 35, 44, 56, 70, 87, 108, 133, 163, 199, 242, 292, 352, 421, 504, 599, 712, 841, 994, 1167, 1371, 1602, 1873, 2179, 2535, 2936, 3401, 3924, 4528, 5206, 5985, 6858, 7857, 8976, 10252, 11679, 13299, 15109, 17159, 19446, 22028
Offset: 1

Views

Author

Clark Kimberling, May 13 2016

Keywords

Examples

			A160009 = (0,1,2,3,5,6,8,10,13,15,16,21,...), so that a = (1,2,3,4,5,7,9,12,...).
		

Crossrefs

Programs

  • Mathematica
    s = {1}; nn = 60; f = Fibonacci[2 + Range[nn]]; Do[s = Union[s, Select[s*f[[i]], # <= f[[nn]] &]], {i, nn}]; s =  Prepend[s, 0]; Take[s, 100]  (* A160009 *)
    isFibonacciQ[n_] := Apply[Or, Map[IntegerQ, Sqrt[{# + 4, # - 4} &[5 n^2]]]];
    ans = Join[{{0}}, {{1}}, Table[#[[Flatten[Position[Map[Apply[Times, #] &, #], s[[n]]]][[1]]]] &[Rest[Subsets[Rest[Map[#[[1]] &, Select[Map[{#, isFibonacciQ[#]} &, Divisors[s[[n]]]], #[[2]] &]]]]]], {n, 3, 500}]]
    Map[Length, ans] (* A272947 *)
    Flatten[Position[Map[Length, ans], 1]]  (* A272948 *)
    Map[Apply[Times, #] &, Select[ans, Length[#] == 1 &]]  (* A000045 *)
    Map[Apply[Times, #] &, Select[ans, Length[#] == 2 &]]  (* A271354 *)
    Map[Apply[Times, #] &, Select[ans, Length[#] == 3 &]]  (* A272949 *)
    Map[Apply[Times, #] &, Select[ans, Length[#] == 4 &]]  (* A272950 *)
    (* Peter J. C. Moses, May 11 2016 *)

Extensions

More terms from Rémy Sigrist, Mar 17 2019

A273803 Numbers that are a product of distinct Fibonacci numbers (A160009) and also a product of distinct Lucas numbers (A274280).

Original entry on oeis.org

1, 3, 21, 126, 504, 987, 5922, 23688, 2178309, 13069854, 52279416, 10610209857723, 63661259146338, 254645036585352
Offset: 1

Views

Author

Clark Kimberling, Jun 19 2016

Keywords

Comments

Is every term greater than 3 divisible by 21?

Examples

			126 = 2*3*21 = 7*18.
		

Crossrefs

Programs

  • Mathematica
    s = {1}; z = 70; f = Fibonacci[2 + Range[z]]; Do[s = Union[s, Select[s*f[[i]], # <= f[[z]] &]], {i, z}]; s = Prepend[s, 0];  (* A160009 *)
    g = LucasL[Range[z]]; t = {1}; Do[t = Union[t, Select[t*g[[i]], # <= g[[z]] &]], {i, z}];
    Intersection[s, t]

A035513 Wythoff array read by falling antidiagonals.

Original entry on oeis.org

1, 2, 4, 3, 7, 6, 5, 11, 10, 9, 8, 18, 16, 15, 12, 13, 29, 26, 24, 20, 14, 21, 47, 42, 39, 32, 23, 17, 34, 76, 68, 63, 52, 37, 28, 19, 55, 123, 110, 102, 84, 60, 45, 31, 22, 89, 199, 178, 165, 136, 97, 73, 50, 36, 25, 144, 322, 288, 267, 220, 157, 118, 81, 58, 41, 27, 233, 521
Offset: 1

Views

Author

Keywords

Comments

T(0,0)=1, T(0,1)=2,...; y^2-x^2-xy
Inverse of sequence A064274 considered as a permutation of the nonnegative integers. - Howard A. Landman, Sep 25 2001
The Wythoff array W consists of all the Wythoff pairs (x(n),y(n)), where x=A000201 and y=A001950, so that W contains every positive integer exactly once. The differences T(i,2j+1)-T(i,2j) form the Wythoff difference array, A080164, which also contains every positive integer exactly once. - Clark Kimberling, Feb 08 2003
For n>2 the determinant of any n X n contiguous subarray of A035513 (as a square array) is 0. - Gerald McGarvey, Sep 18 2004
From Clark Kimberling, Nov 14 2007: (Start)
Except for initial terms in some cases:
(Row 1) = A000045
(Row 2) = A000032
(Row 3) = A006355
(Row 4) = A022086
(Row 5) = A022087
(Row 6) = A000285
(Row 7) = A022095
(Row 8) = A013655 (sum of Fibonacci and Lucas numbers)
(Row 9) = A022112
(Column 1) = A003622 = AA Wythoff sequence
(Column 2) = A035336 = BA Wythoff sequence
(Column 3) = A035337 = ABA Wythoff sequence
(Column 4) = A035338 = BBA Wythoff sequence
(Column 5) = A035339 = ABBA Wythoff sequence
(Column 6) = A035340 = BBBA Wythoff sequence
Main diagonal = A020941. (End)
The Wythoff array is the dispersion of the sequence given by floor(n*x+x-1), where x=(golden ratio). See A191426 for a discussion of dispersions. - Clark Kimberling, Jun 03 2011
If u and v are finite sets of numbers in a row of the Wythoff array such that (product of all the numbers in u) = (product of all the numbers in v), then u = v. See A160009 (row 1 products), A274286 (row 2), A274287 (row 3), A274288 (row 4). - Clark Kimberling, Jun 17 2016
All columns of the Wythoff array are compound Wythoff sequences. This follows from the main theorem in the 1972 paper by Carlitz, Scoville and Hoggatt. For an explicit expression see Theorem 10 in Kimberling's paper from 2008 in JIS. - Michel Dekking, Aug 31 2017
The Wythoff array can be viewed as an infinite graph over the set of nonnegative integers, built as follows: start with an empty graph; for all n = 0, 1, ..., create an edge between n and the sum of the degrees of all i < n. Finally, remove vertex 0. In the resulting graph, the connected components are chains and correspond to the rows of the Wythoff array. - Luc Rousseau, Sep 28 2017
Suppose that h < k are consecutive terms in a row of the Wythoff array. If k is in an even numbered column, then h = floor(k/tau); otherwise, h = -1 + floor(k/tau). - Clark Kimberling, Mar 05 2020
From Clark Kimberling, May 26 2020: (Start)
For k > = 0, column k shows the numbers m having F(k+1) as least term in the Zeckendorf representation of m. For n >= 1, let r(n,k) be the number of terms in column k that are <= n. Then n/r(n,k) = n/(F(k+1)*tau + F(k)*(n-1)), by Bottomley's formula, so that the limiting ratio is 1/(F(k+1)*tau + F(k)). Summing over all k gives Sum_{k>=0} 1/(F(k+1)*tau + F(k)) = 1. Thus, in the limiting sense:
38.19...% of the numbers m have least term 1;
23.60...% have least term 2;
14.58...% have least term 3;
9.01...% have least term 5, etc. (End)
Named after the Dutch mathematician Willem Abraham Wythoff (1865-1939). - Amiram Eldar, Jun 11 2021
From Clark Kimberling, Jun 04 2025: (Start)
Let u(n) = (T(n,1),T(n,2)) mod 2. The positive integers (A000027) are partitioned into 4 sets (sequences):
{n : u(n) = (0,0)} = (3, 5, 9, 15, 19, 25, 29,...) = 1 + 2*A190429
{n: u(n) = (0,1)} = (2, 6, 12, 16, 18, 22, 28,...) = A191331
{n : u(n) = (1,0)} = (1, 7, 11, 13, 17, 21, 23,...) = A086843
{n: u(n) = (1,1)} = (4, 8, 10, 14, 20, 24, 26,...) = A191330.
Let v(n) = (T(n,1),T(n,2)) mod 3. The positive integers are partitioned into 9 sets (sequences):
{n : v(n) = (0,0)} = (4, 13, 19, 28, 43, 52,...) = 1 + 3*A190434
{n: v(n) = (0,1)} = (3, 12, 27, 36, 42, 51,...) = 3*A140399
{n : v(n) = (0,2)} = (5, 11, 20, 35, 44, 50,...) = 2 + 3*A190439
{n: v(n) = (1,0)} = (9, 18, 24, 33, 48, 57,...) = 3*A140400
{n: v(n) = (1,1)} = (2, 8, 17, 26, 32, 41,...) = A384601
{n : v(n) = (1,2)} = (1, 10, 16, 25, 34, 40,...) = A384602
{n: v(n) = (2,0)} = (14, 23, 29, 38, 47, 53,...) = 2 + 3*A190438
{n: v(n) = (2,1)} = (7, 22, 31, 37, 46, 61,...) = 1 + 3*A190433
{n : v(n) = (2,2)} = (6, 15, 21, 30, 39, 45,...) = 3*A140398.
Conjecture: If m >= 2, then {(T(n,1), T(n,2)) mod m} has cardinality m^2. (End)

Examples

			The Wythoff array begins:
   1    2    3    5    8   13   21   34   55   89  144 ...
   4    7   11   18   29   47   76  123  199  322  521 ...
   6   10   16   26   42   68  110  178  288  466  754 ...
   9   15   24   39   63  102  165  267  432  699 1131 ...
  12   20   32   52   84  136  220  356  576  932 1508 ...
  14   23   37   60   97  157  254  411  665 1076 1741 ...
  17   28   45   73  118  191  309  500  809 1309 2118 ...
  19   31   50   81  131  212  343  555  898 1453 2351 ...
  22   36   58   94  152  246  398  644 1042 1686 2728 ...
  25   41   66  107  173  280  453  733 1186 1919 3105 ...
  27   44   71  115  186  301  487  788 1275 2063 3338 ...
  ...
The extended Wythoff array has two extra columns, giving the row number n and A000201(n), separated from the main array by a vertical bar:
0     1  |   1    2    3    5    8   13   21   34   55   89  144   ...
1     3  |   4    7   11   18   29   47   76  123  199  322  521   ...
2     4  |   6   10   16   26   42   68  110  178  288  466  754   ...
3     6  |   9   15   24   39   63  102  165  267  432  699 1131   ...
4     8  |  12   20   32   52   84  136  220  356  576  932 1508   ...
5     9  |  14   23   37   60   97  157  254  411  665 1076 1741   ...
6    11  |  17   28   45   73  118  191  309  500  809 1309 2118   ...
7    12  |  19   31   50   81  131  212  343  555  898 1453 2351   ...
8    14  |  22   36   58   94  152  246  398  644 1042 1686 2728   ...
9    16  |  25   41   66  107  173  280  453  733 1186 1919 3105   ...
10   17  |  27   44   71  115  186  301  487  788 1275 2063 3338   ...
11   19  |  30   49   79   ...
12   21  |  33   54   87   ...
13   22  |  35   57   92   ...
14   24  |  38   62   ...
15   25  |  40   65   ...
16   27  |  43   70   ...
17   29  |  46   75   ...
18   30  |  48   78   ...
19   32  |  51   83   ...
20   33  |  53   86   ...
21   35  |  56   91   ...
22   37  |  59   96   ...
23   38  |  61   99   ...
24   40  |  64   ...
25   42  |  67   ...
26   43  |  69   ...
27   45  |  72   ...
28   46  |  74   ...
29   48  |  77   ...
30   50  |  80   ...
31   51  |  82   ...
32   53  |  85   ...
33   55  |  88   ...
34   56  |  90   ...
35   58  |  93   ...
36   59  |  95   ...
37   61  |  98   ...
38   63  |     ...
   ...
Each row of the extended Wythoff array also satisfies the Fibonacci recurrence, and may be extended to the left using this recurrence backwards.
From _Peter Munn_, Jun 11 2021: (Start)
The Wythoff array appears to have the following relationship to the traditional Fibonacci rabbit breeding story, modified for simplicity to be a story of asexual reproduction.
Give each rabbit a number, 0 for the initial rabbit.
When a new round of rabbits is born, allocate consecutive numbers according to 2 rules (the opposite of many cultural rules for inheritance precedence): (1) newly born child of Rabbit 0 gets the next available number; (2) the descendants of a younger child of any given rabbit precede the descendants of an older child of the same rabbit.
Row n of the Wythoff array lists the children of Rabbit n (so Rabbit 0's children have the Fibonacci numbers: 1, 2, 3, 5, ...). The generation tree below shows rabbits 0 to 20. It is modified so that each round of births appears on a row.
                                                                 0
                                                                 :
                                       ,-------------------------:
                                       :                         :
                       ,---------------:                         1
                       :               :                         :
              ,--------:               2               ,---------:
              :        :               :               :         :
        ,-----:        3         ,-----:         ,-----:         4
        :     :        :         :     :         :     :         :
     ,--:     5     ,--:     ,---:     6     ,---:     7     ,---:
     :  :     :     :  :     :   :     :     :   :     :     :   :
  ,--:  8  ,--:  ,--:  9  ,--:  10  ,--:  ,--:  11  ,--:  ,--:  12
  :  :  :  :  :  :  :  :  :  :   :  :  :  :  :   :  :  :  :  :   :
  : 13  :  : 14  : 15  :  : 16   :  : 17  : 18   :  : 19  : 20   :
The extended array's nontrivial extra column (A000201) gives the number that would have been allocated to the first child of Rabbit n, if Rabbit n (and only Rabbit n) had started breeding one round early.
(End)
		

References

  • John H. Conway, Posting to Math Fun Mailing List, Nov 25 1996.
  • Clark Kimberling, "Stolarsky interspersions," Ars Combinatoria 39 (1995) 129-138.

Crossrefs

See comments above for more cross-references.
Cf. A003622, A064274 (inverse), A083412 (transpose), A000201, A001950, A080164, A003603, A265650, A019586 (row that contains n).
For two versions of the extended Wythoff array, see A287869, A287870.

Programs

  • Maple
    W:= proc(n,k) Digits:= 100; (Matrix([n, floor((1+sqrt(5))/2* (n+1))]). Matrix([[0,1], [1,1]])^(k+1))[1,2] end: seq(seq(W(n, d-n), n=0..d), d=0..10); # Alois P. Heinz, Aug 18 2008
    A035513 := proc(r, c)
        option remember;
        if c = 1 then
            A003622(r) ;
        else
            A022342(1+procname(r, c-1)) ;
        end if;
    end proc:
    seq(seq(A035513(r,d-r),r=1..d-1),d=2..15) ; # R. J. Mathar, Jan 25 2015
  • Mathematica
    W[n_, k_] := Fibonacci[k + 1] Floor[n*GoldenRatio] + (n - 1) Fibonacci[k]; Table[ W[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten
  • PARI
    T(n,k)=(n+sqrtint(5*n^2))\2*fibonacci(k+1) + (n-1)*fibonacci(k)
    for(k=0,9,for(n=1,k, print1(T(n,k+1-n)", "))) \\ Charles R Greathouse IV, Mar 09 2016
    
  • Python
    from sympy import fibonacci as F, sqrt
    import math
    tau = (sqrt(5) + 1)/2
    def T(n, k): return F(k + 1)*int(math.floor(n*tau)) + F(k)*(n - 1)
    for n in range(1, 11): print([T(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Apr 23 2017
    
  • Python
    from math import isqrt, comb
    from gmpy2 import fib2
    def A035513(n):
        a = (m:=isqrt(k:=n<<1))+(k>m*(m+1))
        x = n-comb(a,2)
        b, c = fib2(a-x+2)
        return b*(x+isqrt(5*x*x)>>1)+c*(x-1) # Chai Wah Wu, Jun 26 2025

Formula

T(n, k) = Fib(k+1)*floor[n*tau]+Fib(k)*(n-1) where tau = (sqrt(5)+1)/2 = A001622 and Fib(n) = A000045(n). - Henry Bottomley, Dec 10 2001
T(n,-1) = n-1. T(n,0) = floor(n*tau). T(n,k) = T(n,k-1) + T(n,k-2) for k>=1. - R. J. Mathar, Sep 03 2016

Extensions

Comments about the extended Wythoff array added by N. J. A. Sloane, Mar 07 2016

A274280 Numbers that are a product of distinct Lucas numbers (1,3,4,7,11,...)

Original entry on oeis.org

1, 3, 4, 7, 11, 12, 18, 21, 28, 29, 33, 44, 47, 54, 72, 76, 77, 84, 87, 116, 123, 126, 132, 141, 188, 198, 199, 203, 216, 228, 231, 304, 308, 319, 322, 329, 348, 369, 378, 492, 504, 517, 521, 522, 532, 564, 594, 597, 609, 792, 796, 812, 836, 843, 846, 861
Offset: 1

Author

Clark Kimberling, Jun 17 2016

Keywords

Comments

See the Comment on distinct-product sequences in A160009.

Examples

			The Lucas numbers are 1,3,4,7,11,18,29,..., so that the sequence of all products of distinct Lucas numbers, in increasing order, are 1, 3, 4, 7, 11, 12, 18, 21, 28, 29,...
		

Crossrefs

Cf. A000204, A160009, A274281 (includes 2).

Programs

  • Mathematica
    f[1] = 1; f[2] = 3; z = 32; f[n_] := f[n - 1] + f[n - 2]; f = Table[f[n], {n, 1, z}]; f
    s = {1}; Do[s = Union[s, Select[s*f[[i]], # <= f[[z]] &]], {i, z}]; s
    Take[Times@@@Subsets[LucasL[Range[20]]]//Union,60] (* Harvey P. Dale, Sep 26 2019 *)

A272949 Products of three distinct Fibonacci numbers > 1.

Original entry on oeis.org

30, 48, 78, 80, 120, 126, 130, 195, 204, 208, 210, 312, 315, 330, 336, 340, 504, 510, 520, 534, 544, 546, 550, 816, 819, 825, 840, 864, 880, 884, 890, 1320, 1326, 1335, 1360, 1365, 1398, 1424, 1428, 1430, 1440, 2136, 2142, 2145, 2160, 2184, 2200, 2210, 2262
Offset: 1

Author

Clark Kimberling, May 13 2016

Keywords

Examples

			a(1) = 30 = 2*3*5.
		

Crossrefs

Programs

  • Mathematica
    s = {1}; nn = 60; f = Fibonacci[2 + Range[nn]]; Do[s = Union[s, Select[s*f[[i]], # <= f[[nn]] &]], {i, nn}]; s =  Prepend[s, 0]; Take[s, 100]  (* A160009 *)
    isFibonacciQ[n_] := Apply[Or, Map[IntegerQ, Sqrt[{# + 4, # - 4} &[5 n^2]]]];
    ans = Join[{{0}}, {{1}}, Table[#[[Flatten[Position[Map[Apply[Times, #] &, #], s[[n]]]][[1]]]] &[Rest[Subsets[Rest[Map[#[[1]] &, Select[Map[{#, isFibonacciQ[#]} &, Divisors[s[[n]]]], #[[2]] &]]]]]], {n, 3, 500}]]
    Map[Length, ans] (* A272947 *)
    Flatten[Position[Map[Length, ans], 1]]  (* A272948 *)
    Map[Apply[Times, #] &, Select[ans, Length[#] == 1 &]]  (* A000045 *)
    Map[Apply[Times, #] &, Select[ans, Length[#] == 2 &]]  (* A271354 *)
    Map[Apply[Times, #] &, Select[ans, Length[#] == 3 &]]  (* A272949 *)
    Map[Apply[Times, #] &, Select[ans, Length[#] == 4 &]]  (* A272950 *)
    (* Peter J. C. Moses, May 11 2016 *)
    up=10^9; F=Fibonacci; i=3; Union[ Reap[ While[(a = F[i++]) < up, j=i; While[ (b = F[j++]*a) < up, h=j; While[ (c = F[h++]*b) < up, Sow@c ]]]][[2, 1]]] (* Giovanni Resta, May 14 2016 *)

A049862 Products of two Fibonacci numbers with distinct indices.

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 8, 10, 13, 15, 16, 21, 24, 26, 34, 39, 40, 42, 55, 63, 65, 68, 89, 102, 104, 105, 110, 144, 165, 168, 170, 178, 233, 267, 272, 273, 275, 288, 377, 432, 440, 442, 445, 466, 610, 699, 712, 714, 715, 720, 754, 987, 1131
Offset: 1

Keywords

Comments

There are no duplicates except for the trivial cases 1*F(j)=1*F(j) and F(i)*F(j)=F(j)*F(i). - Robert Israel, May 11 2016
The number 1 is included because 1 = F(1)*F(2). - Clark Kimberling, Jun 19 2016

Crossrefs

Programs

  • Maple
    fib:= combinat:-fibonacci:
    sort(convert(select(`<`,{0,seq(seq(fib(i)*fib(j),i=j+1..100),j=1..100)},fib(101)),list)); # Robert Israel, May 11 2016
  • Mathematica
    Take[Union[Flatten[Table[Fibonacci[i]*Fibonacci[j], {i, 0, 100}, {j, i + 1, 100}]]], 100] (* Clark Kimberling, May 11 2016 *)
  • PARI
    isfib(n) = my(k=n^2); k+=(k+1)<<2; issquare(k) || (n>0 && issquare(k-8));
    isok(n) = {if ((n==0) || (n==1), return (1)); fordiv(n, d, if (d^2 < n, if (isfib(d) && isfib(n/d), return (1)););); return(0);} \\ Michel Marcus, May 27 2019
    
  • PARI
    lista(nn) = {my(out = List([0])); for (i=0, nn, for (j=i+1, nn, listput(out, fibonacci(i)*fibonacci(j)););); Vec(vecsort(select(x->(x < fibonacci(nn+1)), out), , 8));} \\ Michel Marcus, May 27 2019

Extensions

Name changed to conform with A272949 et al. by Clark Kimberling, Jun 18 2016

A274432 Products of distinct tribonacci numbers (A000213).

Original entry on oeis.org

3, 5, 9, 15, 17, 27, 31, 45, 51, 57, 85, 93, 105, 135, 153, 155, 171, 193, 255, 279, 285, 315, 355, 459, 465, 513, 525, 527, 579, 653, 765, 837, 855, 945, 965, 969, 1065, 1201, 1395, 1539, 1575, 1581, 1737, 1767, 1775, 1785, 1959, 2209, 2295, 2565, 2635
Offset: 1

Author

Clark Kimberling, Jun 22 2016

Keywords

Examples

			The tribonacci numbers are 1,1,1,3,5,9,17,31,..., so that the sequence of all products of distinct members, in increasing order, is (3, 5, 9, 15, 17, 27, 31, 45,...).
		

Crossrefs

Cf. A160009, A274280, A274433 (binary products), A274434 (trinary products).

Programs

  • Mathematica
    r[1] := 1; r[2] := 1; r[3] = 1; r[n_] := r[n] = r[n - 1] + r[n - 2] + r[n - 3];
    s = {1}; z = 60; f = Map[r, Range[z]]; Take[f, 20]
    Do[s = Union[s, Select[s*f[[i]], # <= f[[z]] &]], {i, z}];
    Take[s, 2 z]  (*A274432*)
    infQ[n_] := MemberQ[f, n];
    ans = Table[#[[Flatten[Position[Map[Apply[Times, #] &, #], s[[n]]]][[1]]]] &[
    Rest[Subsets[Map[#[[1]] &, Select[Map[{#, infQ[#]} &, Divisors[s[[n]]]], #[[2]] && #[[1]] > 1 &]]]]], {n, 2, 300}];
    Map[Apply[Times, #] &, Select[ans, Length[#] == 2 &]] (* A274433 *)
    Map[Apply[Times, #] &, Select[ans, Length[#] == 3 &]] (* A274434 *)
    (* Peter J. C. Moses, Jun 17 2016 *)

A274288 Numbers that are a product of distinct numbers in row 4 of the Wythoff array, A035513.

Original entry on oeis.org

9, 15, 24, 39, 63, 102, 135, 165, 216, 267, 351, 360, 432, 567, 585, 699, 918, 936, 945, 1131, 1485, 1512, 1530, 1830, 2403, 2448, 2457, 2475, 2961, 3240, 3888, 3960, 3978, 4005, 4791, 5265, 6291, 6408, 6426, 6435, 6480, 7752, 8424, 8505, 10179, 10368, 10395
Offset: 1

Author

Clark Kimberling, Jun 17 2016

Keywords

Comments

See the Comment on distinct-product sequences in A160009.

Examples

			135 = 9*15, 3240 = 9*15*24.
		

Crossrefs

Programs

  • Mathematica
    f[1] = 9; f[2] = 15; z = 33; f[n_] := f[n - 1] + f[n - 2]; f = Table[f[n], {n, 1, z}]; f
    s = {1}; Do[s = Union[s, Select[s*f[[i]], # <= f[[z]] &]], {i, z}]; s1 = Rest[s]

A272950 Products of four distinct Fibonacci numbers > 1.

Original entry on oeis.org

240, 390, 624, 630, 1008, 1020, 1040, 1560, 1632, 1638, 1650, 1680, 2520, 2640, 2652, 2670, 2720, 2730, 4080, 4095, 4272, 4284, 4290, 4320, 4368, 4400, 4420, 6552, 6600, 6630, 6912, 6930, 6942, 6990, 7072, 7120, 7140, 7150, 10608, 10680, 10710, 10725, 10920
Offset: 1

Author

Clark Kimberling, May 14 2016

Keywords

Examples

			a(1) = 240 = 2*3*5*8.
		

Crossrefs

Programs

  • Mathematica
    s = {1}; nn = 60; f = Fibonacci[2 + Range[nn]]; Do[s = Union[s, Select[s*f[[i]], # <= f[[nn]] &]], {i, nn}]; s =  Prepend[s, 0]; Take[s, 100]  (* A160009 *)
    isFibonacciQ[n_] := Apply[Or, Map[IntegerQ, Sqrt[{# + 4, # - 4} &[5 n^2]]]];
    ans = Join[{{0}}, {{1}}, Table[#[[Flatten[Position[Map[Apply[Times, #] &, #], s[[n]]]][[1]]]] &[Rest[Subsets[Rest[Map[#[[1]] &, Select[Map[{#, isFibonacciQ[#]} &, Divisors[s[[n]]]], #[[2]] &]]]]]], {n, 3, 500}]]
    Map[Length, ans] (* A272947 *)
    Flatten[Position[Map[Length, ans], 1]]  (* A272948 *)
    Map[Apply[Times, #] &, Select[ans, Length[#] == 1 &]]  (* A000045 *)
    Map[Apply[Times, #] &, Select[ans, Length[#] == 2 &]]  (* A271354 *)
    Map[Apply[Times, #] &, Select[ans, Length[#] == 3 &]]  (* A272949 *)
    Map[Apply[Times, #] &, Select[ans, Length[#] == 4 &]]  (* A272950 *)
    (* Peter J. C. Moses, May 11 2016 *)
    up=10^6; F=Fibonacci; i=3; Union[ Reap[ While[(a = F[i++]) < up, j=i; While[ (b = F[j++]*a) < up, h=j; While[(c = F[h++]*b) < up, k=h; While[ (d = F[k++]*c) < up, Sow@d ]]]]][[2, 1]]] (* Giovanni Resta, May 14 2016 *)
  • PARI
    list(lim)=my(v=List(),F,best=5,t2,t3,t4,j,k,l); while(fibonacci(best++)<=30*lim,); F=vector(best,i,fibonacci(i)); for(i=6,best, j=4; while(j++Charles R Greathouse IV, May 14 2016
Showing 1-10 of 26 results. Next