cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A087912 Exponential generating function is exp(2*x/(1-x))/(1-x).

Original entry on oeis.org

1, 3, 14, 86, 648, 5752, 58576, 671568, 8546432, 119401856, 1815177984, 29808908032, 525586164736, 9898343691264, 198227905206272, 4204989697906688, 94163381359509504, 2219240984918720512, 54898699229094412288, 1422015190821016633344, 38484192401958599131136
Offset: 0

Views

Author

Vladeta Jovovic, Oct 18 2003

Keywords

Crossrefs

Column k=2 of A289192.

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(2*x/(1-x))/(1-x))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 16 2018
  • Maple
    a := proc(n) option remember: if n<1 then 1 else (2*n+1)*a(n-1) - (n-1)^2*a(n-2) fi end: 'a(n)'$n=0..17; # Zerinvary Lajos, Sep 26 2006; corrected by M. F. Hasler, Sep 30 2012
  • Mathematica
    Table[n! SeriesCoefficient[E^(2*x/(1-x))/(1-x), {x, 0, n}], {n, 0, 20}] (* Vincenzo Librandi, May 10 2013 *)
    Table[n!*LaguerreL[n, -2], {n, 0, 30}] (* G. C. Greubel, May 16 2018 *)
  • PARI
    A087912(n)={n!^2*polcoeff(exp(x+x*O(x^n))*sum(m=0,n,2^m*x^m/m!^2) ,n)} \\ Paul D. Hanna, Nov 18 2011
    
  • PARI
    x='x+O('x^66); Vec(serlaplace(exp(2*x/(1-x))/(1-x))) \\ Joerg Arndt, May 10 2013
    

Formula

E.g.f.: exp(2*x/(1-x))/(1-x). - M. F. Hasler, Sep 30 2012
a(n) = n!*LaguerreL(n, -2).
a(n) = Sum_{k=0..n} 2^k*(n-k)!*binomial(n, k)^2.
E.g.f.: exp(x) * Sum_{n>=0} 2^n*x^n/n!^2 = Sum_{n>=0} a(n)*x^n/n!^2. [Paul D. Hanna, Nov 18 2011]
a(n) ~ n^(n+1/4)*exp(2*sqrt(2*n)-n-1)*2^(-3/4). - Vaclav Kotesovec, Sep 29 2012
Lim n -> infinity a(n)/(n!*BesselI(0, 2*sqrt(2*n))) = exp(-1). - Vaclav Kotesovec, Oct 12 2016
a(n) = n! * A160615(n)/A160616(n). - Alois P. Heinz, Jun 28 2017
D-finite with recurrence: a(n) +(-2*n-1)*a(n-1) +(n-1)^2*a(n-2)=0. - R. J. Mathar, Feb 21 2020

Extensions

Several minor edits by M. F. Hasler, Sep 30 2012

A160616 Denominator of Laguerre(n, -2).

Original entry on oeis.org

1, 1, 1, 3, 1, 15, 45, 105, 315, 405, 4725, 155925, 467775, 96525, 42567525, 638512875, 30405375, 10854718875, 97692469875, 618718975875, 189403768125, 194896477400625, 238206805711875, 7044115540336875, 8701554491004375
Offset: 0

Views

Author

N. J. A. Sloane, Nov 14 2009

Keywords

Examples

			1, 3, 7, 43/3, 27, 719/15, 3661/45, 13991/105, 66769/315, 133261/405, 2363513/4725, 116441047/155925, ...
		

Crossrefs

For numerators see A160615.
Cf. A087912.

Programs

  • Magma
    [Denominator((&+[Binomial(n,k)*(2^k/Factorial(k)): k in [0..n]])): n in [0..30]]; // G. C. Greubel, May 06 2018
  • Mathematica
    Denominator[Table[LaguerreL[n, -2], {n, 0, 50}]] (* G. C. Greubel, May 06 2018 *)
  • PARI
    a(n) = sum(k=0, n, (-1)^k*binomial(n, k)*(-2)^k/k!); \\ Michel Marcus, Aug 10 2015
    

Formula

Denominators of coefficients in expansion of exp(2*x/(1 - x))/(1 - x). - Ilya Gutkovskiy, Aug 29 2018
Showing 1-2 of 2 results.