cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A064397 Numbers k such that prime(k) + prime(k+1) is a square.

Original entry on oeis.org

7, 15, 20, 61, 152, 190, 293, 377, 492, 558, 789, 919, 942, 1768, 2343, 2429, 2693, 2952, 3136, 3720, 4837, 5421, 5722, 6870, 7347, 8126, 8193, 9465, 9857, 9927, 10410, 10483, 10653, 12685, 13763, 13955, 16033, 16342, 17859, 18367, 18474
Offset: 1

Views

Author

Jason Earls, Sep 29 2001

Keywords

Examples

			For k=15: prime(15) = 47 and prime(16) = 53, 47 + 53 = 100 = 10^2.
		

Crossrefs

Cf. A061275 (the primes), A062703 (squares), A074924 (square root of sum), A000720.
Cf. A076305 (3 primes), A072849 (4 primes), A166255 (70 primes), A166261 (120 primes).

Programs

  • Magma
    [n: n in [0..50000]| IsSquare(NthPrime(n) +NthPrime(n+1))]; // Vincenzo Librandi, Apr 06 2011
  • Mathematica
    lst={};Do[p1=Prime[n];p2=Prime[n+1];q=(p1+p2)^0.5;If[q==IntegerPart[q], AppendTo[lst, n]], {n, 1, 9!}];lst (* Vladimir Joseph Stephan Orlovsky, Sep 02 2008 *)
  • PARI
    j=[]; for(n=1,30000,x=prime(n)+prime(n+1); if(issquare(x),j=concat(j,n))); j
    
  • PARI
    { n=0; default(primelimit, 8500000); for (m=1, 10^9, if (issquare(prime(m) + prime(m + 1)), write("b064397.txt", n++, " ", m); if (n==175, break)) ) } \\ Harry J. Smith, Sep 13 2009
    

Formula

a(n) = A000720(A061275(n)). - Amiram Eldar, Jun 28 2024
a(n) >> n^2/log^2 n. - Charles R Greathouse IV, Mar 08 2025

A076305 Numbers k such that prime(k) + prime(k+1) + prime(k+2) is a square.

Original entry on oeis.org

6, 12, 59, 65, 112, 965, 1029, 1455, 1706, 1830, 1890, 2573, 3457, 4490, 4664, 5609, 7927, 9130, 10078, 10143, 12597, 18248, 19727, 20086, 20887, 21708, 22739, 25041, 26536, 28511, 29346, 29664, 29774, 33387, 39945, 40677, 46136, 49869, 58135
Offset: 1

Views

Author

Zak Seidov, Oct 05 2002

Keywords

Comments

See A076304 for the square roots of the sums of the three primes.

Examples

			6 is a term because prime(6) + prime(7) + prime(8) = 13 + 17 + 19 = 49 = 7^2.
		

Crossrefs

Cf. A076304 (square roots of sums), A080665 (squares = sums), A206279 (lesser of the primes).
Cf. A064397 (same for 2 primes), A072849 (4 primes), A166255 (70 primes), A166261 (120 primes).

Programs

Formula

a(n) = A000720(A206279(n)). - M. F. Hasler, Jan 03 2020

Extensions

Corrected by Ray Chandler, Sep 26 2006

A072849 Prime(a(n)) + ... + prime(a(n)+3) is a square = A051395(n)^2.

Original entry on oeis.org

3, 21, 33, 84, 104, 199, 689, 1848, 1923, 3435, 3795, 3985, 4126, 4742, 5968, 6413, 6495, 7649, 8927, 9906, 16885, 17677, 20474, 20996, 22924, 23923, 36902, 38733, 40347, 40654, 41956, 42601, 43047, 44482, 44920, 51608, 52305, 56706, 66032
Offset: 1

Views

Author

Zak Seidov, Jun 21 2003

Keywords

Comments

Conjecture: this sequence and A064397 are disjoint. That is to say, prime(n) + prime(n+1) and prime(n) + prime(n+1) + prime(n+2) + prime(n+3) cannot be squares at the same time. - Jianing Song, Nov 13 2022

Examples

			a(1) = 3 because prime(3) + prime(4) + prime(5) + prime(6) = 5+7+11+13 = 36 = 6*6.
		

Crossrefs

Cf. A051395 (square root of sums), A206280 (primes), A000720.
Cf. A064397 (2 primes), A076305 (3 primes), A166255 (70 primes), A166261 (120 primes).

Programs

Formula

a(n) = A000720(A206280(n)). - Amiram Eldar, Jun 28 2024

Extensions

Definition corrected by Zak Seidov, Dec 13 2014

A166255 Numbers k with property that the sum of 70 successive primes starting with prime(k) is a square.

Original entry on oeis.org

71, 201, 1024, 1594, 10915, 36934, 51050, 60054, 60914, 71822, 80331, 85230, 92916, 96352, 103271, 114667, 151019, 158591, 183484, 184348, 193979, 196078, 223587, 277476, 295890, 309502, 317601, 334181, 338139, 369101, 485330, 494188, 530832
Offset: 1

Views

Author

Zak Seidov, Oct 10 2009

Keywords

Comments

Sum_{i=k..k+69} prime(i) = s^2; and the values of s are A166256.

Examples

			prime(71)+...+prime(71+69) = 200^2 = A166256(1)^2,
prime(201)+...+prime(201+69) = 322^2 = A166256(2)^2,
prime(1024)+...+prime(1024+69) = 770^2 = A166256(3)^2.
		

Crossrefs

Cf. A166256.
Cf. A064397 (2 primes), A076305 (3 primes), A072849 (4 primes), A166261 (120 primes).

Programs

  • Mathematica
    PrimePi[First[#]]&/@Select[Partition[Prime[Range[1000000]],70,1], IntegerQ[ Sqrt[ Total[#]]]&] (* Harvey P. Dale, Jun 13 2011 *)

A230327 Index of smallest prime such that the sum of n consecutive primes starting with this specific prime is a square.

Original entry on oeis.org

7, 6, 3, 42, 107, 6, 38, 1, 1631, 170, 38, 119, 5, 546, 78, 309, 85, 604, 199, 57, 270, 2, 3, 333, 45, 2, 178, 1708, 291, 2, 35, 72, 322, 19, 84, 5, 155, 346, 122, 2175, 1395, 24, 886, 2, 3108, 168, 14, 499, 340, 294, 156, 578, 325, 240, 115, 61, 283, 1035
Offset: 2

Views

Author

Michel Marcus, Oct 16 2013

Keywords

Examples

			a(2)=7 because 17+19 (2 terms) = 36 is a square, 17 being the 7th prime.
a(3)=6 because 13+17+19 (3 terms) =49 is a square, 13 being the 6th prime.
		

Crossrefs

Cf. A064397 (2 primes), A076305 (3 primes), A072849 (4 primes), A166255 (70 primes), A166261 (120 primes).
Cf. A132955 (primes themselves), A132956 (squares=sums), A132957 (square roots of sums).

Programs

  • PARI
    a(n, lim=10^5) = {n --; pr = primes(lim); for (i = 1, lim-n, s = sum(k=i, i+n, pr[k]); if (issquare(s), return (i));); return (0);} \\ Michel Marcus, Oct 16 2013

A358156 a(n) is the smallest number k such that the sum of k consecutive prime numbers starting with the n-th prime is a square.

Original entry on oeis.org

9, 23, 4, 1862, 14, 3, 2, 211, 331, 163, 366, 3, 124, 48, 2, 449, 8403, 121, 35, 2, 4, 105, 77, 43, 190769, 1726, 234, 248, 200, 295, 293, 73, 4, 873, 32, 64, 2456139382, 8, 4519, 14, 123, 5, 9395, 296, 26, 5, 3479, 810, 9, 7091, 1669, 157, 1189, 12559, 269, 4930, 21, 376, 3
Offset: 1

Views

Author

Todor Szimeonov, Nov 01 2022

Keywords

Comments

a(60) > 10^10 and a(68) > 10^13. - Martin Ehrenstein, Nov 09 2022

Examples

			For n=7, prime(7) = 17 and starting there 2 primes 17 + 19 = 36 which is square, so that a(7)=2.
		

Crossrefs

Cf. A000040, A000290, A105720, A230327 (exchanges the roles of n, k), A287027 (squares reached).
Indices of terms: A064397 (2's), A076305 (3's), A072849 (4's), A166255 (70's), A166261 (120's).

Programs

  • Maple
    f:= proc(n) local p,s,k;
      p:= ithprime(n); s:= p;
      for k from 2 do
        p:= nextprime(p);
        s:= s+p;
        if issqr(s) then return k fi
      od
    end proc:
    map(f, [$1..36]); # Robert Israel, Nov 08 2022
  • Mathematica
    a[n_] := Module[{p = s = Prime[n], k = 1}, While[! IntegerQ[Sqrt[s]], p = NextPrime[p]; s += p; k++]; k]; Array[a, 36] (* Amiram Eldar, Nov 08 2022 *)

Extensions

a(25)-a(36) from Robert Israel, Nov 08 2022
a(37)-a(59) from Martin Ehrenstein, Nov 09 2022

A166262 Numbers n with property that n^2 is a sum of some 120 successive primes.

Original entry on oeis.org

3734, 3846, 8660, 10602, 13248, 13690, 14318, 14936, 17934, 20458, 23902, 27614, 27704, 29176, 30942, 31064, 34238, 35070, 36216, 38346, 38532, 38774, 42236, 42428, 43190, 43742, 43794, 47308, 47622, 49708, 56070, 57036, 58856, 65692, 66122, 66940, 68016
Offset: 1

Views

Author

Zak Seidov, Oct 10 2009

Keywords

Comments

n^2=sum(prime(k),k=m,m+119); corresponding values of m: 10917, 11527, 50923, 73894, 111468, 118436, 128662, 139123, 195234 (A166261).

Examples

			a(1)=3734: 3734^2=sum[Prime[i], {i,10917,10917+119}],
a(2)=3846: 3846^2=sum[Prime[i], {i,11527,11527+119}].
		

Crossrefs

Cf. A166261.

Programs

  • Mathematica
    Select[Sqrt[#]&/@(Total/@Partition[Prime[Range[5*10^6]],120,1]),IntegerQ] (* Harvey P. Dale, Jul 17 2019 *)
  • PARI
    lista(nn) = {pr = primes(nn); for (i=1, nn-119, s = sum(k=i, i+119, pr[k]); if (issquare(s), print1(sqrtint(s), ", ")););} \\ Michel Marcus, Oct 15 2013

Extensions

a(35)-a(37) from Michel Marcus, Oct 15 2013
Showing 1-7 of 7 results.