A167554
The second left hand column of triangle A167552.
Original entry on oeis.org
-2, -5, -7, -6, 0, 13, 35, 68, 114, 175, 253, 350, 468, 609, 775, 968, 1190, 1443, 1729, 2050, 2408, 2805, 3243, 3724, 4250, 4823, 5445, 6118, 6844, 7625, 8463, 9360, 10318, 11339, 12425, 13578, 14800, 16093, 17459, 18900, 20418
Offset: 2
Equals the second left hand column of
A167552.
-
Table[(1/6)*(2*n^3 - 15*n^2 + 19*n - 6), {n,2,100}] (* or *) LinearRecurrence[{4,-6,4,-1}, {-2, -5, -7, -6}, 100] (* G. C. Greubel, Jun 15 2016 *)
A167555
The third left hand column of triangle A167552.
Original entry on oeis.org
2, 14, 63, 209, 559, 1281, 2618, 4902, 8568, 14168, 22385, 34047, 50141, 71827, 100452, 137564, 184926, 244530, 318611, 409661, 520443, 654005, 813694, 1003170, 1226420, 1487772, 1791909, 2143883, 2549129, 3013479, 3543176
Offset: 3
Equals the third left hand column of triangle
A167552.
-
LinearRecurrence[{6,-15,20,-15,6,-1},{2,14,63,209,559,1281},40] (* or *) Table[1/120*(66*n+95*n^2+40*n^3+25*n^4+14*n^5),{n,40}] (* Harvey P. Dale, Mar 26 2012 *)
A168302
The fourth left hand column of triangle A167552.
Original entry on oeis.org
-8, -66, -264, -689, -1255, -1360, 684, 8502, 28842, 73150, 159588, 315549, 580723, 1010768, 1681640, 2694636, 4182204, 6314574, 9307264, 13429515, 19013709, 26465824, 36276980, 49036130, 65443950, 86327982, 112659084
Offset: 4
- G. C. Greubel, Table of n, a(n) for n = 4..1000
- Index entries for linear recurrences with constant coefficients, signature (8, -28, 56, -70, 56, -28, 8, -1).
Equals the fourth left hand column of triangle
A167552.
-
LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{-8, -66, -264, -689, -1255, -1360, 684, 8502},50] (* G. C. Greubel, Jul 17 2016 *)
A168303
The fifth left hand column of triangle A167552.
Original entry on oeis.org
24, 308, 2236, 11640, 47753, 163419, 485121, 1284987, 3101175, 6927921, 14502059, 28718989, 54217878, 98183330, 171418854, 289756194, 475873962, 761609034, 1190854830, 1823151902, 2738088199, 4040638965, 5867589455, 8395197525, 11848267665
Offset: 5
- G. C. Greubel, Table of n, a(n) for n = 5..1000
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
Equals the fifth left hand column of triangle
A167552.
-
[(642*n^9-13833*n^8+132840*n^7-726642*n^6+ 2439738*n^5-5133177*n^4+6699660*n^3-5194188*n^2+ 2157840*n- 362880)/362880: n in [5..40]]; // Vincenzo Librandi, Jul 18 2016
-
LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{24, 308, 2236, 11640, 47753, 163419, 485121, 1284987, 3101175, 6927921},50] (* G. C. Greubel, Jul 17 2016 *)
A167553
The second right hand column of triangle A167552.
Original entry on oeis.org
3, -5, 14, -66, 308, -2132, 14064, -126480, 1081632, -11925792, 125458560, -1636387200, 20447873280, -307814964480
Offset: 2
Equals the second right hand column of triangle
A167552.
A167546
The ED1 array read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 2, 4, 1, 6, 12, 7, 1, 24, 48, 32, 10, 1, 120, 240, 160, 62, 13, 1, 720, 1440, 960, 384, 102, 16, 1, 5040, 10080, 6720, 2688, 762, 152, 19, 1, 40320, 80640, 53760, 21504, 6144, 1336, 212, 22, 1
Offset: 1
The ED1 array begins with:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1
1, 4, 7, 10, 13, 16, 19, 22, 25, 28
2, 12, 32, 62, 102, 152, 212, 282, 362, 452
6, 48, 160, 384, 762, 1336, 2148, 3240, 4654, 6432
24, 240, 960, 2688, 6144, 12264, 22200, 37320, 59208, 89664
120, 1440, 6720, 21504, 55296, 122880, 245640, 452880, 783144, 1285536
- B. de Smit and H.W. Lenstra, The Mathematical Structure of Escher's Print Gallery, Notices of the AMS, Volume 50, Number 4, pp. 446-457, April 2003.
- Johannes W. Meijer, The four Escher-Droste arrays, jpg image, Mar 08 2013.
- A. Ryabov, P. Chvosta, Tracer dynamics in a single-file system with absorbing boundary, arXiv preprint arXiv:1402.1949 [cond-mat.stat-mech], 2014.
A000142 equals the first column of the array.
A167550 equals the a(n, n+1) diagonal of the array.
A047053 equals the a(n, n) diagonal of the array.
A167558 equals the a(n+1, n) diagonal of the array.
A167551 equals the row sums of the ED1 array read by antidiagonals.
A167552 is a triangle related to the a(n) formulas of rows of the ED1 array.
A167556 is a triangle related to the GF(z) formulas of the rows of the ED1 array.
A167557 is the lower left triangle of the ED1 array.
Cf.
A068424 (the (m-1)!/(m-n-1)! factor),
A007680 (the (2*n-1)*(n-1)! factor).
-
nmax:=10; mmax:=10; for n from 1 to nmax do for m from 1 to n do a(n,m) := 4^(m-1)*(m-1)!*(n-1+m-1)!/(2*m-2)! od; for m from n+1 to mmax do a(n,m):= (2*n-1)*(n-1)! + sum((-1)^(k-1)*binomial(n-1,k)*a(n,m-k),k=1..n-1) od; od: for n from 1 to nmax do for m from 1 to n do d(n,m):=a(n-m+1,m) od: od: T:=1: for n from 1 to nmax do for m from 1 to n do a(T):= d(n,m): T:=T+1: od: od: seq(a(n),n=1..T-1);
-
nmax = 10; mmax = 10; For[n = 1, n <= nmax, n++, For[m = 1, m <= n, m++, a[n, m] = 4^(m - 1)*(m - 1)!*((n - 1 + m - 1)!/(2*m - 2)!)]; For[m = n + 1, m <= mmax, m++, a[n, m] = (2*n - 1)*(n - 1)! + Sum[(-1)^(k - 1)*Binomial[n - 1, k]*a[n, m - k], {k, 1, n - 1}]]; ]; For[n = 1, n <= nmax, n++, For[m = 1, m <= n, m++, d[n, m] = a[n - m + 1, m]]; ]; t = 1; For[n = 1, n <= nmax, n++, For[m = 1, m <= n, m++, a[t] = d[n, m]; t = t + 1]]; Table[a[n], {n, 1, t - 1}] (* Jean-François Alcover, Dec 20 2011, translated from Maple *)
A003148
a(n+1) = a(n) + 2n*(2n+1)*a(n-1), with a(0) = a(1) = 1.
Original entry on oeis.org
1, 1, 7, 27, 321, 2265, 37575, 390915, 8281665, 114610545, 2946939975, 51083368875, 1542234996225, 32192256321225, 1114841223671175, 27254953356505875, 1064057291370698625, 29845288035840902625, 1296073464766972266375, 41049997128507054562875
Offset: 0
arctan(sqrt(2*x/(1-x)))/sqrt(2*x*(1-x)) = 1 + 1/3*x + 7/15*x^2 + 9/35*x^3 + ...
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
a003148 n = a003148_list !! n
a003148_list = 1 : 1 : zipWith (+) (tail a003148_list)
(zipWith (*) (tail a002943_list) a003148_list)
-- Reinhard Zumkeller, Nov 22 2011
-
[n le 2 select 1 else Self(n-1) + 2*(n-2)*(2*n-3)*Self(n-2): n in [1..30]]; // G. C. Greubel, Nov 04 2022
-
# double factorial of odd "l" df := proc(l) local n; n := iquo(l,2); RETURN( factorial(l)/2^n/factorial(n)); end: x := 1; for n from 1 to 15 do if n mod 2 = 0 then x := 2*n*x+df(2*n-1); else x := 2*n*x-df(2*n-1); fi; print(x); od; quit
-
a[n_] := a[n] = (-1)^n*(2n - 1)!! + 2n*a[n - 1]; a[0] = 1; Table[ a[n], {n, 0, 14}] (* Jean-François Alcover, Dec 01 2011, after R. J. Mathar *)
a[ n_] := If[ n < 0, 0, (2 n + 1)!! Hypergeometric2F1[ -n, 1/2, 3/2, 2]]; (* Michael Somos, Apr 20 2018 *)
a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ 1 / ((1 - 2 x) Sqrt[1 + 2 x]), {x, 0, n}]]; (* Michael Somos, Apr 20 2018 *)
RecurrenceTable[{a[0]==a[1]==1,a[n+1]==a[n]+2n(2n+1)a[n-1]},a,{n,20}] (* Harvey P. Dale, Jul 27 2019 *)
-
Vec(serlaplace(1/(sqrt(1+2*x + O(x^20))*(1-2*x)))) \\ Andrew Howroyd, Feb 05 2018
-
@CachedFunction
def a(n): return 1 if (n<2) else a(n-1) + 2*(n-1)*(2*n-1)*a(n-2) # a = A003148
[a(n) for n in range(31)] # G. C. Greubel, Nov 04 2022
A098557
Expansion of e.g.f. (1/2)*(1+x)*log((1+x)/(1-x)).
Original entry on oeis.org
0, 1, 2, 2, 8, 24, 144, 720, 5760, 40320, 403200, 3628800, 43545600, 479001600, 6706022400, 87178291200, 1394852659200, 20922789888000, 376610217984000, 6402373705728000, 128047474114560000, 2432902008176640000, 53523844179886080000, 1124000727777607680000
Offset: 0
Cf.
A109613 (odd numbers repeated).
Equals the first left hand column of
A167552.
Equals the first right hand column of
A167556.
(End)
-
[0,1] cat [Factorial(n-1) + Factorial(n-2)*(1+(-1)^n)/2: n in [2..30]]; // G. C. Greubel, Jan 17 2018
-
Join[{0,1}, Table[(n-1)! + (n-2)!*(1+(-1)^n)/2, {n,2,30}]] (* or *) With[{nmax = 50}, CoefficientList[Series[(1/2)*(1 + x)*Log[(1 + x)/(1 - x)], {x,0,nmax}], x]*Range[0,nmax]!] (* G. C. Greubel, Jan 17 2018 *)
-
for(n=0, 30, print1(if(n==0,0, if(n==1, 1, (n-1)! + (n-2)!*(1 + (-1)^n)/2)), ", ")) \\ G. C. Greubel, Jan 17 2018
Showing 1-8 of 8 results.
Comments